Name:	Lecure Section
Name.	Lecure Section

Ma 221	Exam IIIB	09S

I pledge my honor that I have abided by the Stevens Honor System.

You may not use a calculator, cell phone, or computer while taking this exam. All work must be shown to obtain full credit. Credit will not be given for work not reasonably supported. When you finish, be sure to sign the pledge.

#2 ______ #3 _____ #4 _____

Note: A table of Laplace Transforms is given at the end of the exam.

Name:_____ Lecure Section ____

1 (25 pts.) Use Laplace Transforms to solve

$$y'' + 10y' + 9y = 8t$$
 $y(0) = -1$ $y'(0) = 1$

Name:_____

Lecure Section ____

2a (**15 pts**.) Use the definition of the Laplace transform to find $\mathcal{L}\{f(t)\}$ where

$$f(t) = \begin{cases} 6 & 0 \le t \le 6 \\ t & t \ge 6 \end{cases}$$

2b (10 **pts**.) Find

$$\mathcal{L}^{-1}\left\{\frac{1+3s}{s^2-8s+21}\right\}$$

Name:	Lecure Section

3 (25 pts.) Find the first $\underline{\text{six}}$ non-zero terms in the series solution near x = 0 of the equation

$$y'' + xy = 0$$

Be sure to give the recurrence relation. Indicate the two linearly independent solutions and give the first six nonzero terms of the solution.

Name:	Le

(25 **pts**.) Find the eigenvalues and eigenfunctions for

$$y'' + \lambda y = 0$$
; $y(0) = 0$, $y(3\pi) = 0$

Be sure to consider all values of λ .

Name:_____ Lecure Section ____

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$n \ge 1$	<i>s</i> > 0
e^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		<i>s</i> > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}{f}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		