Ma 221
Exam IA Solutions
10S
Solve:
1 [25 pts.]

$$
1+y^{2}+2(t+1) y \frac{d y}{d t}=0, \quad y(0)=1
$$

Solution: We write the equation as

$$
\left(1+y^{2}\right) d t+2(t+1) y d y=0
$$

The $M=1+y^{2}$ and $N=2(t+1) y$ and

$$
M_{y}=2 y=N_{t}
$$

Hence the equation is exact and there exists a function $f(t, y)$ such that

$$
f_{t}=M \text { and } f_{y}=N
$$

So

$$
f_{t}=1+y^{2} \quad \Rightarrow f=t+t y^{2}+g(y)
$$

Also

$$
f_{y}=2 t y+g^{\prime}(y)=N=2 t y+2 y
$$

Therefore

$$
g(y)=y^{2}+C
$$

and

$$
f=t+t y^{2}+y^{2}+C
$$

and the solution is given by

$$
t+t y^{2}+y^{2}=k
$$

$y(0)=1$ implies

$$
1=k
$$

so

$$
t+t y^{2}+y^{2}=1
$$

or

$$
y=\sqrt{\frac{1-t}{1+t}}
$$

Alternate Solution: We can also observe that the equation is separable. We write the equation a little differently and then integrate.

$$
1+y^{2}+2(t+1) y \frac{d y}{d t}=0
$$

becomes

$$
\begin{aligned}
2(t+1) y \frac{d y}{d t} & =-\left(1+y^{2}\right) \\
\frac{2 y}{\left(1+y^{2}\right)} \frac{d y}{d t} & =-\frac{1}{(t+1)} \\
\int \frac{2 y}{\left(1+y^{2}\right)} d y & =\int-\frac{1}{(t+1)} d t
\end{aligned}
$$

The solution is given implicitly by

$$
\ln \left(1+y^{2}\right)=-\ln |t+1|+C
$$

Since $y(0)=1$,

$$
\ln (2)=-\ln (1)+C=C
$$

Finally the solution is

$$
\begin{aligned}
\ln \left(1+y^{2}\right) & =-\ln |t+1|+\ln 2 \\
& =\ln \frac{2}{|t+1|}
\end{aligned}
$$

or

$$
\left(1+y^{2}\right)=\frac{2}{|t+1|}
$$

To obtain the form of the first solution, one must observe that the absolute value can be dropped because the initial condition and continuity restricts us to $t+1>0$. Then it's just a little algebra.

$$
y^{2}=\frac{2}{t+1}-1=\frac{2-(t+1)}{t+1}=\frac{1-t}{t+1} .
$$

2 [25 pts.]

$$
t y^{\prime}+4 y=6 t^{2} \quad y(1)=3 t>0
$$

Solution: This equation is first order linear and may be written as

$$
y+\frac{4}{t} y^{\prime}=6 t
$$

We multiply the DE by $e^{\int P(t) d t}=e^{\int \frac{4}{t} d t}=e^{4 \ln t}=t^{4}$ and get

$$
t^{4} y^{\prime}+4 t^{3} y=6 t^{5}
$$

or

$$
\frac{d}{d t}\left(t^{4} y\right)=6 t^{5}
$$

Hence

$$
t^{4} y=t^{6}+c
$$

and

$$
y=t^{2}+\frac{c}{t^{4}}
$$

The initial condition yields

$$
3=1+c \text { or } c=2
$$

so

$$
y=t^{2}+\frac{2}{t^{4}}
$$

3 [25 points]

$$
(2 y-\sin y) y^{\prime}+t=\sin t \quad y(0)=1
$$

Solution: We rewrite the equation as

$$
(2 y-\sin y) d y+(t-\sin t) d t=0
$$

which is separable. Integrating we have

$$
y^{2}+\cos y+\frac{t^{2}}{2}+\cos t=c
$$

The initial condition implies

$$
1+\cos 1+1=c
$$

so

$$
y^{2}+\cos y+\frac{t^{2}}{2}+\cos t=2+\cos 1
$$

4 [25 pts.]

$$
y^{\prime}=2 t^{-1}+e^{-y} y(1)=0
$$

Solution: Rewrite the equation as

$$
e^{y} y^{\prime}-\frac{2}{t} e^{y}=1
$$

Let $z=e^{y}$. Then $z^{\prime}=e^{y} y^{\prime}$ and the DE becomes

$$
z^{\prime}-\frac{2}{t} z=1
$$

This is first order linear in z. Multiply the DE by $e^{-\int \frac{2}{t} d t}=e^{-2 \ln t}=t^{-2}$ to get

$$
t^{-2} z-2 t^{-3} z=t^{-2}
$$

or

$$
\left(t^{-2} Z\right)^{\prime}=t^{-2}
$$

Hence

$$
t^{-2} Z=-t^{-1}+c
$$

or

$$
z=e^{y}=-t+c t^{2}
$$

The initial condition implies

$$
1=-1+c \text { or } c=2
$$

so

$$
e^{y}=-t+2 t^{2}
$$

or

$$
y=\ln \left(2 t^{2}-t\right)
$$

