1. (30 pts. total) Consider the differential equation

\[y'' + y' - 2y = 2e^t - 20 \sin 2t \]

1a (6 pts.) Find the homogeneous solution of this equation.

Solution: The characteristic equation is

\[p(r) = r^2 + r - 2 = (r + 2)(r - 1) = 0 \]

Thus the roots are \(r = -2, 1 \) and

\[y_h = c_1 e^t + c_2 e^{-2t} \]

1b (20 pts.) Find a particular solution of this equation.

Solution: We find \(y_{p_1} \) for \(2e^t \) and \(y_{p_2} \) for \(-20 \sin 2t\). Since \(p(1) = 0 \), \(e^t \) is a homogeneous solution.

\[p'(r) = 2r + 1 \] so \(p'(1) = 3 \neq 0 \). Thus

\[y_{p_1} = \frac{Kte^t}{p'(1)} = \frac{2te^t}{3} \]

There are two ways to find \(y_{p_2} \).

Method I Using Complex Variables: We consider two equations

\[y'' + y' - 2y = -20 \sin 2t \]
\[v'' + v' - 2v = -20 \cos 2t \]

Multiply the first equation by \(i \) and add it to the second equation. Letting \(w = v + iy \) we have

\[w'' - w' - 2w = -20(\cos 2t + i \sin 2t) = -20e^{2it} \]

Since \(p(2i) = (2i)^2 + 2i - 2 = -6 + 2i \neq 0 \)

\[w_p = \frac{Ke^{2it}}{p(2i)} = \frac{10e^{2it}}{3 - i} \]

\(y_{p_2} \) is the imaginary part of \(w_p \).

\[w_p = \frac{10e^{2it}}{3 - i} \left(\frac{3 + i}{3 + i} \right) = \frac{10(3 + i)(\cos 2t + i \sin 2t)}{10} = (3 \cos 2t - \sin 2t) + i(\cos 2t + 3 \sin 2t) \]

Thus

\[y_{p_2} = 3 \sin 2t + \cos 2t \]

Method II Without Using Complex Variables: Let

\[y_{p_2} = A \sin 2t + B \cos 2t \]
\[y'_{p_2} = 2A \cos 2t - 2B \sin 2t \]
\[y''_{p_2} = -4A \sin 2t - 4B \cos 2t \]
Exam IIB Solutions

Substituting into
\[y'' + y' - 2y = -20 \sin 2t \]
we have
\[-4A \sin 2t - 4B \cos 2t + 2A \cos 2t - 2B \sin 2t - 2A \sin 2t - 2B \cos 2t = -20 \sin 2t \]
or
\[[-6A - 2B] \sin 2t + [2A - 6B] \cos 2t = -20 \sin 2t \]
Hence
\[-6A - 2B = -20 \]
\[2A - 6B = 0 \]
From the second equation \(A = 3B \) and from the first equation \(B = 1 \) and then \(A = 3 \). Again
\[y_{p_2} = 3 \sin 2t + \cos 2t \]
\[y_p = y_{p_1} + y_{p_2} = \frac{2te^{2t}}{3} + 3 \sin 2t + \cos 2t \]

1 c (4 pts.) Give a general solution of this equation.
Solution:
\[y = y_h + y_p = c_1 e^t + c_2 e^{-2t} + \frac{2te^{2t}}{3} + 3 \sin 2t + \cos 2t \]

SNB Check: \(y'' + y' - 2y = 2e^t - 20 \sin 2t \), Exact solution is:
\[C_1 e^t - \frac{2}{9} e^t + \frac{2}{3} te^t + \cos 2t + 3 \sin 2t + C_2 e^{-2t} \]

2 (40 pts. total) Consider the Initial Value Problem
\[t^2 y'' - 3ty' + 4y = 2t^2 \quad y(1) = 1 \quad y'(1) = 4, y > 0. \]

2a (5 pts.) Find a homogeneous solution to this differential equation.
Solution: We first find the homogeneous solution to this Euler equation. The indicial equation is, since \(p = -3 \) and \(q = 4 \)
\[m^2 + (p - 1)m + q = m^2 - 4m + 4 = (m - 2)^2 \]
Thus \(m = 1 \) is a repeated root and
\[y_h = c_1 t^2 + c_2 t^2 \ln t \]

2b (25 pts.) Find a particular solution of this differential equation.
Solution: To find a particular solution we use the Method of Variations of Parameters with \(y_1 = t^2 \) and \(y_2 = t^2 \ln t \). Then
\[y_p = v_1 y_1 + v_2 y_2 = t^2 v_1 + \left(t^2 \ln t\right)v_2 \]
and the two equations for \(v_1' \) and \(v_2' \), namely
\[v_1'y_1 + v_2'y_2 = 0 \]
\[v_1'y_1 + v_2'y_2 = \frac{f}{a} \]
become
Exam IIB Solutions

\[t^2 v_1' + (t^2 \ln t)v_2' = 0 \]
\[2tv_1' + (2t \ln t + t)v_2' = \frac{2t^2}{t^2} = 2 \]

\[W[t, t \ln t] = \begin{vmatrix} t^2 & t^2 \ln t \\ 2t & 2t \ln t + t \end{vmatrix} = t^3 \neq 0 \text{ since } t > 0 \]

Hence

\[v_1' = -\frac{2t^2 \ln t}{t^3} = -\frac{2 \ln t}{t} \]
\[v_2' = \frac{2t}{t^3} = \frac{2}{t} \]
\[v_1 = \int \left(-\frac{2 \ln t}{t} \right) dt = -(\ln t)^2 \]
\[v_2 = \int \frac{2}{t} dt = 2 \ln t \]

Therefore

\[y_p = y_p = t^2 v_1 + (t^2 \ln t)v_2 = -(\ln t)^2 + 2t^2(\ln t)^2 = t^2(\ln t)^2 \]

2c (10 pts.) Find the solution to this Initial Value Problem given above.

\[y'' - 2y' = 12x^2 \]

Solution: The characteristic equation is

\[p(r) = r^2 - 2r = r(r - 2) \]

Thus the roots are \(r = 0, 2 \) and

\[y_h = c_1 e^{0x} + c_2 e^{2x} = c_1 + c_2 e^{2x} \]

To find a particular solution we note that there is no \(y \) term in the DE. Hence we let
Exam IIB Solutions

\[y_p = Ax + Bx^2 + Cx^3 \]
Exam IIB Solutions

Then
\[y_p' = A + 2Bx + 3Cx^2 \]
\[y_p'' = 2B + 6Cx \]
The DE implies
\[2B + 6Cx - 2A - 4Bx - 6Cx^2 = 12x^2 \]
Hence
\[C = -2 \]
\[2B - 2A = 0 \]
\[6C - 4B = 0 \]
\[B = A = -3 \]
and
\[y_p = -3x - 3x^2 - 2x^3 \]
\[y = y_h + y_p = c_1 + c_2 e^{2x} - 3x - 3x^2 - 2x^3 \]
SNB check \(y'' - 2y' = 12x^2 \), Exact solution is: \(C_2 e^{2x} - 3x - 3x^2 - 2x^3 - \frac{1}{2} C_1 - \frac{3}{2} \)