\qquad

Lecture Section: \qquad

Ma 221
Exam IA Solutions
12S

Solve:
1 [25 pts.]

$$
\left(e^{t} x+1\right) d t+\left(e^{t}-1\right) d x=0 \quad x(1)=1
$$

Solution:

$$
M=e^{t_{X}}+1 \text { and } N=e^{t}-1
$$

Since

$$
M_{X}=e^{t}=N_{t}
$$

the equation is exact. Thus there exists $f(t, x)$ such that

$$
f_{t}=M \text { and } f_{x}=N
$$

From the first equation we get by integrating with respect to t while holding x fixed

$$
f=e^{t_{X}}+t+g(x)
$$

But

$$
f_{x}=e^{t}+g^{\prime}(x)=N=e^{t}-1
$$

Hence

$$
g^{\prime}(x)=-1
$$

and $g(x)=-x+c$ so

$$
f=e^{t_{X}}+t-x+c
$$

and the solution is given by

$$
e^{t} x+t-x=k
$$

The initial condition implies

$$
e+1-1=k
$$

so the solution is given by

$$
e^{t} x+t-x=e
$$

or

$$
x=\frac{e-t}{e^{t}-1}
$$

2 [25 pts.]

$$
\frac{d y}{d x}+4 y-e^{-x}=0 \quad y(0)=\frac{4}{3}
$$

Solution: This equation is first order linear, and we rewrite it as

$$
\frac{d y}{d x}+4 y=e^{-x}
$$

\qquad

Lecture Section: \qquad
Since $P(x)=4$ the integrating factor is

$$
e^{\int 4 d x}=e^{4 x}
$$

Multiplying both sides of the DE by this we get

$$
e^{4 x} y^{\prime}+4 e^{4 x} y=e^{3 x}
$$

or

$$
\frac{d\left(e^{4 x} y\right)}{d x}=e^{3 x}
$$

Integrating we have

$$
e^{4 x} y=\frac{1}{3} e^{3 x}+c
$$

or

$$
y=\frac{1}{3} e^{-x}+c e^{-4 x}
$$

The initial condition implies

$$
\frac{4}{3}=\frac{1}{3}+c
$$

so $c=1$ and

$$
y=\frac{1}{3} e^{-x}+e^{-4 x}
$$

3 [25 points]

$$
\left(x+x y^{2}\right) d x+e^{x^{2}} y d y=0
$$

Solution: This equation is separable, since it can be rewritten as

$$
x\left(1+y^{2}\right) d x+e^{x^{2}} y d y=0
$$

or

$$
x e^{-x^{2}} d x=-\frac{y}{1+y^{2}} d y
$$

Integrating we have

$$
-\frac{1}{2} e^{-x^{2}}=-\frac{1}{2} \ln \left(1+y^{2}\right)+c
$$

or

$$
\ln \left(1+y^{2}\right)-e^{-x^{2}}=k
$$

4 [25 pts.]

$$
y^{\prime}+\frac{4}{x} y=x^{3} y^{2} \quad y(2)=-1
$$

Solution: This is a Bernoulli equation. Multiplying both side of the equation by y^{-2} leads to

$$
y^{-2} y^{\prime}+\frac{4}{x} y^{-1}=x^{3}
$$

Let $z=y^{-1}$. Then $z^{\prime}=-y^{-2} y^{\prime}$ and we may rewrite the DE as

$$
-z^{\prime}+\frac{4}{x} z=x^{3}
$$

\qquad

Lecture Section: \qquad
or

$$
z^{\prime}-\frac{4}{x} z=-x^{3}
$$

which is a first order linear DE in z. The integrating factor for this equation is

$$
e^{-\int \frac{4}{x} d x}=e^{-4 \ln x}=x^{-4}
$$

Multiplying the DE for z by x^{-4} leads to

$$
x^{-4} z^{\prime}-4 x^{-5} z=-x^{-1}
$$

or

$$
\frac{d\left(x^{-4} z\right)}{d x}=-x^{-1}
$$

or

$$
x^{-4} z=-\ln x+c
$$

Thus

$$
z=-x^{4} \ln x+c x^{4}
$$

Since $z=y^{-1}$ we have

$$
\frac{1}{y}=-x^{4} \ln x+c x^{4}
$$

The initial condition implies

$$
-1=-2^{4} \ln 2+2^{4} c
$$

or

$$
c=-\frac{1}{16}+\ln 2
$$

Finally we have

$$
\frac{1}{y}=-x^{4} \ln x+\left(-\frac{1}{16}+\ln 2\right) x^{4}
$$

