Name:	Lecure Section	cure Section	
Ma 221	Exam II A	12S	
I pledge my honor that I hav	e abided by the Stevens He	onor System.	
You may not use a calculator, cell phoreshown to obtain full credit. Credit will you finish, be sure to sign the pledge.			
Note: A table of selected integrals appear	rs on the last page of this exam.		
Score on Problem #1a			
#1b			
#1c			
#1d			
#2			
#3			
#4			

Total Score

Name:_____

Lecure Section ____

1. (40 pts. total) Consider the Initial Value Problem

$$y'' + 2y' + y = t^2 + 1 - e^t$$
 $y(0) = 0$ $y'(0) = 2$

1 a (6 **pts**.) Find the homogeneous solution of this equation.

1 b (20 **pts**.) Find a particular solution of this equation.

Name:_____

Lecure Section ____

1 c (4 pts.) Give a general solution of this equation.

1d (10 pts.) Find the solution to this Initial Value Problem

$$y'' + 2y' + y = t^2 + 1 - e^t$$
 $y(0) = 0$ $y'(0) = 2$

Name:_____ Lecure Section ____

2 (20 pts.) Find a general solution of

$$t^2y'' + 3ty' + 5y = 0$$

Name:	Lecure Section

3 (25 **pts**.) Find a general solution of the differential equation $y'' - 6y' + 9y = t^{-3}e^{3t}$

.

Name:_____

Lecure Section ____

4 (15 **pts**.) Write down a second order homogeneous linear differential equation with real constant coefficients of the form

$$y'' + by' + cy = 0$$

whose solutions are

$$\frac{1}{2}e^{-2x}\cos 3x \text{ and } \frac{3e^{-2x}}{4}\sin 3x.$$

Table of Integrals

$$\int \ln t dt = t(\ln t - 1) + C$$

$$\int (\ln t)^2 dt = t\left(\ln^2 t - 2\ln t + 2\right) + C$$

$$\int \frac{\ln t}{t} dt = \frac{1}{2}\ln^2 t + C$$

$$\int \frac{(\ln t)^2}{t} dt + C = \frac{1}{3}\ln^3 t + C$$