Name:	Lecturer	
Lecture Section:		
Ma 221	Exam IA	13S
I pledge my honor that I have abided by the Stevens Honor System.		
You may not use a calculator, cell phone, or conshown to obtain full credit. Credit will not be g you finish, be sure to sign the pledge.	•	
Score on Problem #1		
#2		
#3		
#4		
Total Score		

Lecturer _____

Lecture Section: _____

Solve the following problems:

$$\frac{du}{dv} + \frac{\sec^2 v}{\tan v} u = \cot v \qquad u\left(\frac{\pi}{4}\right) = \frac{\pi}{2}$$

Name:

Lecturer _____

Lecture Section: _____

$$\frac{dy}{dx} = y\sqrt{x+2}; \quad y(2) = 1$$

.

$$(ye^{xy} + 2xy)dx + (xe^{xy} + x^2)dy = 0$$

Name:	Lecturer
Lecture Section:	

4 [25 **pts**.]
$$y' = 5y - 5ty^3$$

Name:	Lecturer	

Lecture Section:

Table of Integrals

$$\int \frac{\sec^2 t}{\tan t} dt = \ln(\tan t) + C$$

$$\int \tan t dt = \ln(\sec t) + C$$

$$\int te^{at} dt = \frac{1}{a^2} e^{at} (at - 1) + C$$

$$\int t^2 e^{at} dt = \frac{1}{a^3} e^{at} (a^2 t^2 - 2at + 2) + C$$

$$\int \cos^2 t dt = \frac{1}{2} t + \frac{1}{4} \sin 2t + C$$

$$\int \cos^3 t dt = \frac{1}{3} \cos^2 t \sin t + \frac{2}{3} \sin t + C$$

$$\int \sin^2 t dt = \frac{1}{2} t - \frac{1}{4} \pi - \frac{1}{4} \sin 2t + C$$

$$\int \sin^3 t dt = \frac{1}{12} \cos 3t - \frac{3}{4} \cos t + C$$