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Solve:

1 25 pts.

du
dv

 sec2v
tanv u  cotv u 

4
 

2

Solution: This equation if linear with Pv  sec2v
tanv . The integrating factor is

I  e
Pvdv

 e
 sec2v

tanv dv
 elntanv  tanv

Multiplying the DE by this leads to
du
dv

tanv  u sec2v  1

or
d
dv
u tanv  1

Integrating we have

u tanv  v  C

The initial condition implies

u 
4

 
4
 C  

2

Thus C  
4

and the solution is

uv  v  
4

cotv

2 25 pts.

dy
dx

 y x  2 ; y2  1

Solution: This equation is separable and may be written as
dy
y  x  2 dx

Thus

 dy
y   x  2 dx

Integrating both sides leads to

ln|y|  2
3
x  2

3
2  C

Using the initial condition we get

0  2
3
4

3
2  C
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so

C  − 16
3

and the solution is

ln|y|  2
3
x  2

3
2 − 16

3

3 25 pts.

yexy  2xydx  xexy  x2 dy  0

Solution: Here

M  yexy  2xy, N  xexy  x2

We check for exactness. Since

My  Nx  xyexy  exy  2x

The equation is exact. Thus there exists a function fx,y such that
∂f
∂x  M and

∂f
∂y  N

∂f
∂x  M  yexy  2xy

Integrating with respect to x while holding y constant leads to

f  exy  x2y  gy

where gy is an unknown function of y. Now to find gy, note that ∂f
∂y  N, that is

∂f
∂y  xexy  x2  xexy  x2  g′y

So g′y  0, and therefore gy  C1 and the solution is given by

f  exy  x2y  C

4 25 pts.

y′  5y − 5ty3

Solution: We rewrite the equation as

y′ − 5y  −5ty3

This is a Bernoulli equation so we multiply by y−3 and get

y−3y′ − 5y−2  −5t

Let z  y−2 so that z′  −2y−3y′. Then the DE becomes

− 1
2

z′ − 5z  −5t

or
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z′  10z  10t

This is a first order linear DE with Pt  10. The integrating factor is e
 10dt

 e10t. Multiplying the
above DE by this we get

e10tz′  10e10tz  10te10t

which is equivalent to

d ze10t

dt
 10te10t

Since 10  te10tdt  1
10

e10t10t − 1  C  te10t − 1
10

e10t  C then

ze10t  te10t − 1
10

e10t  C

or

z  t − 1
10

 Ce−10t

and the solution is given by

z  y−2  t − 1
10

 Ce−10t
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Table of Integrals

 sec2t
tan t dt  lntan t  C

 teatdt  1
a2 eatat − 1  C

 t2eatdt  1
a3 eat a2t2 − 2at  2  C

 cos2tdt  1
2

t  1
4

sin2t  C

 cos3tdt  1
3

cos2t sin t  2
3

sin t  C

 sin2tdt  1
2

t − 1
4
 − 1

4
sin2t  C

 sin3tdt  1
12

cos3t − 3
4

cos t  C
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