\qquad

Lecture Section: \qquad

Ma 221

Exam IB Solutions 13S
Solve:
1 [25 pts.]

$$
\frac{d u}{d v}+(\tan v) u=\cos v \quad u(\pi)=2 \pi
$$

Solution: This equation if linear with $P(v)=\tan v$. The integrating factor is

$$
I=e^{\int P(v) d v}=e^{\int \tan d v}=e^{\ln (\sec v)}=\sec v
$$

Multiplying the DE by this leads to

$$
\frac{d u}{d v} \sec v+u \sec v \tan v=1
$$

or

$$
\frac{d}{d v}(u \sec v)=1
$$

Integrating we have

$$
\begin{aligned}
u \sec v & =v+C \\
u & =v \cos v+C \cos v \\
& =(v+C) \cos v
\end{aligned}
$$

The initial condition implies

$$
u(\pi)=(\pi+C)(-1)=2 \pi
$$

Thus $C=-3 \pi$ and the solution is

$$
u(v)=(v-3 \pi) \cos v
$$

2 [25 pts.]

$$
\frac{d y}{d x}=(2 x+1) \sqrt{y} ; \quad y(1)=4
$$

Solution: This equation is separable and may be written as

$$
\frac{d y}{\sqrt{y}}=(2 x+1) d x
$$

Thus

$$
\int \frac{d y}{\sqrt{y}}=\int(2 x+1) d x
$$

Integrating both sides leads to
\qquad

Lecture Section: \qquad

$$
2 \sqrt{y}=x^{2}+x+C
$$

Using the initial condition we get

$$
4=2+C
$$

so

$$
C=2
$$

and the implicit solution is

$$
2 \sqrt{y}=x^{2}+x+2
$$

3 [25 pts.]

$$
\left(y e^{x y}+y^{2}\right) d x+\left(x e^{x y}+2 x y\right) d y=0
$$

Solution: Here

$$
M=y e^{x y}+y^{2}, \quad N=x e^{x y}+2 x y
$$

We check for exactness. Since

$$
M_{y}=N_{x}=x y e^{x y}+e^{x y}+2 y
$$

The equation is exact. Thus there exists a function $f(x, y)$ such that

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=M \text { and } \frac{\partial f}{\partial y}=N \\
& \frac{\partial f}{\partial x}=M=y e^{x y}+y^{2}
\end{aligned}
$$

Integrating with respect to x while holding y constant leads to

$$
f=e^{x y}+x y^{2}+g(y)
$$

where $g(y)$ is an unknown function of y. Now to find $g(y)$, note that $\frac{\partial f}{\partial y}=N$, that is

$$
\frac{\partial f}{\partial y}=x e^{x y}+2 x y=x e^{x y}+2 x y+g^{\prime}(y)
$$

So $g^{\prime}(y)=0$, and therefore we may choose $g(y)=0$ and the solution is given by

$$
f=e^{x y}+x y^{2}=C
$$

4 [25 pts.]

$$
y^{\prime}=5 y-5 t y^{4}
$$

Solution: We rewrite the equation as

$$
y^{\prime}-5 y=-5 t y^{4}
$$

This is a Bernoulli equation so we multiply by y^{-4} and get

$$
y^{-4} y^{\prime}-5 y^{-3}=-5 t
$$

\qquad

Lecture Section: \qquad
Let $z=y^{-3}$ so that $z^{\prime}=-3 y^{-4} y^{\prime}$. Then the DE becomes

$$
-\frac{1}{3} z^{\prime}-5 z=-5 t
$$

or

$$
z^{\prime}+15 z=15 t
$$

This is a first order linear DE with $P(t)=15$. The integrating factor is $e^{\int 15 d t}=e^{15 t}$. Multiplying the above DE by this we get

$$
e^{15 t_{z}^{\prime}}+15 e^{15 t} z=15 t e^{15 t}
$$

which is equivalent to

$$
\frac{d\left(z e^{15 t}\right)}{d t}=15 t e^{15 t}
$$

Since $15 \int t e^{15 t} d t=\frac{1}{15} e^{15 t}(15 t-1)+C=t e^{15 t}-\frac{1}{15} e^{15 t}+C$ then

$$
z e^{15 t}=t e^{15 t}-\frac{1}{15} e^{15 t}+C
$$

or

$$
z=t-\frac{1}{15}+C e^{-15 t}
$$

and the implicit solution to the original d.e. is given by

$$
z=y^{-3}=t-\frac{1}{15}+C e^{-15 t}
$$

\qquad

Lecture Section: \qquad

Table of Integrals

$$
\begin{array}{|l|}
\hline \int \frac{\sec ^{2} t}{\tan t} d t=\ln (\tan t)+C \\
\hline \int t e^{a t} d t=\frac{1}{a^{2}} e^{a t}(a t-1)+C \\
\hline \int t^{2} e^{a t} d t=\frac{1}{a^{3}} e^{a t}\left(a^{2} t^{2}-2 a t+2\right)+C \\
\hline \int \cos ^{2} t d t=\frac{1}{2} t+\frac{1}{4} \sin 2 t+C \\
\hline \int \cos ^{3} t d t=\frac{1}{3} \cos ^{2} t \sin t+\frac{2}{3} \sin t+C \\
\hline \int \sin ^{2} t d t=\frac{1}{2} t-\frac{1}{4} \pi-\frac{1}{4} \sin 2 t+C \\
\hline \int \sin ^{3} t d t=\frac{1}{12} \cos 3 t-\frac{3}{4} \cos t+C \\
\hline
\end{array}
$$

