3. T	T 0 .:
Name:	Lecure Section

Ma 221	Exam IIIA	13S

I pledge my honor that I have abided by the Stevens Honor System.

You may not use a calculator, cell phone, or computer while taking this exam. All work must be shown to obtain full credit. Credit will not be given for work not reasonably supported. When you finish, be sure to sign the pledge.

#1b #2 #3 #4 #4 #4 Total Score

Note: A table of Laplace Transforms is given at the end of the exam.

Name:_____ Lecure Section ___

1a (10 **pts**.) Let $F(s) = \widehat{f}(s) = \mathcal{L}\{f(t)\}$. Show that

$$\mathcal{L}\lbrace e^{-at}f(t)\rbrace = F(s+\alpha) = \widehat{f}(s+a)$$

$$\mathcal{L}^{-1}\left(\frac{1}{s^3+s}\right)$$

Name:_____ Lecure Section ____

2 (25 pts.) Use Laplace Transforms to solve the initial value problem

$$y'' + y' - 2y = 4$$
 $y(0) = 2$ $y'(0) = 1$

Name:	Lecure Section
-------	----------------

3 (25 pts.) Find the first 5 nonzero terms of the power series solution about x = 0 for the DE: y'' - 2xy' + 2y = 0

Be sure to give the recurrence relation.

Name:	Lecure Section
-------	----------------

4 (25 **pts**.) Find all eigenvalues (λ) and the corresponding eigenfunctions for the boundary value problem $y'' - 2y + \lambda y = 0 \quad y'(0) = y'(\pi) = 0$

Be sure to consider all values of λ .

Name:_____ Lecure Section ___

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s) = \widehat{f}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$n \ge 1$	s > 0
e ^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		s > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}{f}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		