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BOUNDARY VALUE PROBLEMS

Homogeneous Boundary Value Problems

Consider the following problem:

D.E.Ly  a0xy′′  a1xy′  a2xy  0 a ≤ x ≤ b

B.C. 1ya  1y′a  0 1
2  1

2 ≠ 0

B.C. 2yb  2y′b  0 2
2  2

2 ≠ 0

1

Here 1,2,1, and 2 are constants.

Example

y′′  0 y′0  y′1  0

Here 1  2  0

 y  Ax  b y′x  A y′0  y′1  A  0
 yx  b b any constant.

The Boundary Value Problem 1 is called linear and homogeneous since if u1x and u2x satisfy it,
 c1u1x  c2u2x also does.

Example

y′′ − 6y′  5y  0 y0  1 y2  1

Solution: The characteristic equation is

r2 − 6r  5  r − 5r − 1  0

so r  1,5

Thus

yx  c1ex  c2e5x

y0  c1  c2  1

y2  c1e2  c2e10  1

Thus from the first equation c2  1 − c1 and the second equation becomes

c1e2  1 − c1 e10  1

c1e2 − e10   1 − e10

c1  1 − e10

e2 − e10

c2  1 − 1 − e10

e2 − e10
 1

e2 − e10
e2 − 1

1



y  1 − e10

e2 − e10
ex  e2 − 1

e2 − e10
e5x

SNB check

y′′ − 6y′  5y  0

y0  1

y2  1

, Exact solution is: e5x

e2−e10 e
2 − 1 − ex

e2−e10 e
10 − 1

Remark. The homogeneous Boundary Value Problem (B.V.P.) always possesses the solution yx  0.

Question. When does there exist a nonzero solution to 1?
Let y1x and y2x be two linearly independent solutions of Ly  0.  yx  c1y1  c2y2 is the general

solution of the DE.

B.C. 
1ya  1y′a  0

2yb  2y′b  0
and yx  c1y1  c2y2 

c11y1a  1y1
′ a  c21y2a  1y2

′ a  0

c12y1b  2y1
′ b  c22y2b  2y2

′ b  0.

The above are two equations for c1 and c2. We want a nontrivial solution. Let Bau  1ua  1u ′a and
Bbu  2ub  2u ′b. Then the determinant of the coefficients of the above system must equal zero. Thus
we require

Bay1  Bay2 

Bby1  Bby2 
 0 2

Theorem 1. The homogeneous linear B.V.P. 1 has a nontrivial solution if and if 2 holds.

Theorem 2. If ux is a particular nontrivial solution of the B.V.P. 1, then all solutions are given by y  cux
where c is an arbitrary constant.

Proof. Let vx be any solution, ux a particular solution of the B.V.P. 1  1ua  1u ′a  0 and
1va  1v′a  0 since u and v both satisfy the first B.C. These equations may be regarded as equations for
1,1. However, since by assumption 1 and 1 are not both zero 

ua u ′a

va v′a
 0  Wu,vxa  Wux,vx  0 for a ≤ x ≤ b

 u and v are two LD solutions of the D.E.  there exist constants c1,c2 ≠ 0 such that c1ux  c2vx  0 for
a ≤ x ≤ b  vx  − c1

c2
ux  cux.

Example

y′′ − 2y  0  ≠ 0 y0  y1  0

The general solution is y  c1ex  c2e−x. The B.C y0  0.  c1  c2  0, whereas the condition y1  0
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leads to
c1e  c2e−  0. The two equations for c1 and c2 are

c1  c2  0

c1e  c2e−  0

The determinant of the coefficients is
1 1

e e−
≠ 0.  c1  c2  0  the only solution is y ≡ 0.

Eigenvalue Problems

The following special kind of B.V.P. is called an eigenvalue problem.

Ly  y  0 a ≤ x ≤ b

B.C. 1ya  1y′a  0 1
2  1

2 ≠ 0

B.C. 2yb  1y′b  0 2
2  2

2 ≠ 0

∗

Here Ly  a0xy′′  a1xy′  a2xy, and  is a parameter.

Again y ≡ 0 is a solution for all . However, we are interested in nontrivial (nonzero) solutions.

Definition. If a nontrivial solution of the B.V.P. ∗ exists for a value   i, then i is called an eigenvalue of L
(relevant to the B.Cs.). The corresponding nontrivial solution yix is called an eigenfunction.
Example Find the eigenvalues and eigenfunctions for

y′′  y  0, y′0  0, y1  0

We must consider three cases;   0,  0, , and   0 .

I.   0. Let   −2 where  ≠ 0. Then the differential equation becomes

y′′ − 2y  0

and has the general solution

y  c1ex  c2e−x.

The boundary conditions 
y′0  c1 − c2  0 or c1  c2 , and y1  c1e  c2e−  0 . c1  c2  0.
Thus for   0, the only solution is y  0.

II.   0. The solution is y  c1x  c2. The BCs imply c1  c2  0. Again the only solution is y  0.
III.   0. Let   2 where  ≠ 0. The DE becomes

y′′  2y  0

and has the general solution

y  c1 sinx  c2 cosx.

The BCs imply

y′0  c1cos0 − c2 sin0  c1  0. Hence c1  0, , since  ≠ 0. Thus

y  c2 cosx.
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Now y1  c2 cos  0. Since we want a nontrivial solution we cannot have c2  0.
Hence

cos  0    2n  1
2

,n  0,1,2, . . .

We therefore have the eigenvalues

n  2n  1
2

2
2,

and eigenfunctions

ynx  Cn cos 2n  1
2

x,

for n  0,1,2, . . . Note the negative values of n do not give additional eigenfunctions since cos−t  cos t.
Example Find the eigenvalues and eigenfunctions for

y′′ − 12y′  47  y  0 y0  y5  0

Solution: The characteristic equation is

r2 − 12r  47    0

so

r 
12  144 − 447  

2
 6  2 2 − 

Thus we have 3 cases to deal with, 2 −   0,2 −   0, and 2 −   0.
Case I: 2 −   0. Let 2 −   2 where  ≠ 0. The the general homogeneous solution is

yx  C1e62x  C2e6−2x

The BCs imply

C1  C2  0

C1e625  C2e6−25  0

, Solution is: C2  0,C1  0. Thus y  0 and there are no eigenvalues for this case.

Case II:   2. Then

yx  C1e6x  C2xe6x

The BCs imply

C1  0

C25e30  0  C2  0

Therefore   2 is not an eigenvalue.

Case III: 2 −   0. Let 2 −   −2 where  ≠ 0. Then r  6  2i. The solution to the DE is

yx  C1e6x sin2x  C2e6x cos2x

The BCs imply

y0  C2  0

y5  C1e30 sin10  0

Thus

10  n, n  1,2,…

or

  n
10

n  1,2,…

and the eigenvalues are
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  2  2  2  n22

100
n  1,2,…

The eigenfunctions are

ynx  Ane6x sin n
5

x

Example

y′′  y  0 y  y2  0

Solution: There are 3 cases to consider.   0,  0, , and   0 .

I.   0. Let   −2 where  ≠ 0. Then the differential equation becomes

y′′ − 2y  0

and has the general solution

yx  c1ex  c2e−x.

Then

y  c1e  c2e−  0

y2  c1e2  c2e−2  0

Thus from the first equation

c2  −c1e2

and the second equation implies

c1e2 − 1  0

Hence c1  0 and thus c2  0, so y  0 is the only solution. There are no negative eigenvalues.

II.   0. Then we have y′′  0 so

yx  c1x  c2

y  c1  c2  0

y2  2c1  c2  0

Therefore c1  c2  0 and y  0, so 0 is not an eigenvalue.

III.   0. Let   2 The DE becomes

y′′  2y  0

so

yx  c1 sinx  c2 cosx

The initial conditions yield

y  c1 sin  c2 cos  0

y2  c1 sin2  c2 cos2  0

This system will have a non-trivial solution if and only if

sin cos

sin2 cos2
 0

That is if and only if

sincos2 − cos sin2  sin − 2  − sin  0

Thus we must have
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  n n  1,2,3,…

or

  n n  1,2,3,…

Hence the eigenvalues are

  2  n2 n  1,2,3,…

The two equations above for c1 and c2 become

c1 sinn  c2 cosn  0

c1 sin2n  c2 cos2n  0

Thus c2  0 and c1 is arbitrary. The eigenfunctions are

ynx  an sinnx

Remark. If u and v are 2 vectors, then u  v  u  v  0

u  x1, . . . ,xn  v y1, . . . ,yn  As n →  u  v →  xiyi.

Definition. Let fx,gx be two continuous functions on a,b. We define the inner product of f and g in an
interval a ≤ x ≤ b, denoted by  f,g , by

 f,g  
a

b
fxgxdx.

Definition. Two functions f and g are said to be orthogonal on a,b if

 f,g  0.

Example. 
0


sinxcosxdx  sin2x

2
|0
  0 Therefore sinx and cosx are orthogonal on0,.

Definition. The set of functions f1, f2, . . .  is called an orthogonal set  fi, fj  0 i ≠ j.

Example. 1, cos x
L

, cos 2x
L

, . . . , cos nx
L

, . . . is an orthogonal set on 0,L

Remark. For vectors we have the following: if u  u1, . . . ,un  then the length of

u  ‖u‖  ∑ui
2 

1
2  u  u . Motivated by this we have the following definition.

Definition. Let fx be a continuous function on a≤ x ≤ b. Then the norm of f is defined by

‖f‖   f, f   
a

b
f2xdx .

Example. 0 ≤ x ≤ 1 ‖x2‖2  x2,x2  
0

1
x4dx  x5

5
|0
1  1

5

 ‖x2‖  1
5

.

Remark. Let y  x2

‖x2‖
 x2

5
 ‖y‖ 

‖x2‖

5
 1.

Definition. If ‖f‖  1, then f is said to be normalized.

Definition. A set of functions 1,2, . . .  is called orthonormal if
(1) the set is orthogonal, and
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(2) each has norm 1. Therefore 1,2, . . .  is an orthonormal set 

  i, j   ij 
0 i ≠ j

1 i  j

Example sinnx  sinx, sin2x, sin3x, . . .  on0, is an orthogonal set since

 sinmx, sinnx  
0


sinmx sinnxdx  1

2 0

cosm − nx − cosm  nxdx m ≠ n

 1
2

sinm − nx
m − n − sinm  nx

m − n
0



 1
2

sinm − n
m − n − sinm  n

m  n  0 m ≠ n

since m and n are integers.
Now

 sinnx, sinnx  
0


sin2nxdx

 1
2 0


1 − cos2nxdx

 1
2

x − sin2nx
2n

|0
  

2
.

Therefore

‖sinnx‖  sinnx, sinnx 
1
2  

2

 this set is not orthonormal. We can make an orthonormal set from these functions by dividing each element in
the original by 

2
 2

 sinnx is orthonormal set n  1,2, . . . .

Properties of the inner product.

1. f,g  g, f  since 
a

b
fxgxdx  

a

b
gxfxdx

2. f  g,h    f,h    g,h  since f  gdx    fdx    gdx

3.a. f, f  0iff  0

b. f, f  0iff ≠ 0

Remarks. (1) It will be necessary when dealing with partial differential equations to “expand” an arbitrary
function fx in terms of an orthogonal set of functions n.

(2) Recall that in 3 space, if u 1  1,0,0, u 2  0,1,0, and u 3  0,0,1 then
v  1,2,3   1u1  2u2  3u3.
Note that
 u 1, v  u 1  v  u 1,1 u 1  2 u 2  3 u 3  u 1,1 u 1    u 1,2 u 2    u 1,3 u 3 

 1  u 1, u 1  2  u 1, u 2  3  u 1, u 3  1

Also  u 2, v  2 and  u 3, v  3.
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Suppose we are given a set of orthogonal functions n on 0,L, and we desire to expand a function fx given
on 0,L in terms of them. Then we want

fx ∑
n1



nnx.

Question. What does k ?

Consider

 k, fx  k,∑
1



nn 

  k,11  22  

 1  k,1    k  k,k  k1  k,k1  

But  k, j  0 if j ≠ k since the set k is orthogonal.



 k, fx  k  k,k  k‖k‖2

Therefore

k 


0

L
fxkxdx

‖k‖2



0

L
fxkxdx


0

L
kx2dx

k  1,2, . . . ∗

∗ is the formula for the coefficients in the expansion of a function fx in terms of a set of orthogonal functions.

Ordinary Fourier Series

Fourier Sine Series

Consider the eigenvalue problem

D.E.y′′  y  0 0 ≤ x ≤ L B.C.y0  yL  0

We shall first solve this problem. There are 3 cases to consider -   0,  0,  0.

I.   0. Let   −2 where  ≠ 0. The DE becomes

y′′ − 2y  0

so

yx  c1ex  c2e−x

Then y0  0 implies
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c1  c2  0

so c2  −c1 and

yx  c1ex − e−x 

But then

yL  c1eL − e−L   0

So c1  0 and hence c2  0 and thus yx  0 and there are no negative eigenvalues.

II.   0 The the equation becomes y′′  0 and y  c1x  c2 and the BCs imply y  0.

III.   0. Let   2 where  ≠ 0 The DE becomes

y′′  2y  0

Thus

y  c1 sinx  c2 cosx

y0  c2  0. Also

yL  c1 sinL  0

so

  n
L

n  1,2,3,…



n  n22

L2
n  1,2,3,…

are the eigenvalues, whereas the eigenfunctions are

sin n x  sin n
L

x  n n  1,2,3,…

These functions form an orthogonal set.

Hence if

fx ∑
1



k sin kx
L

then from ∗ above

k  2
L 0

L
fx sin kx

L
dx,

since


0

L
kx2dx  L

2
.

These formulas are for the Fourier sine series for fx on 0  x  L.

Remarks. 1. At x  0 and x  L ∑k sin kx
L

gives 0 for fx. Therefore unless f0  fL  0 the Fourier

series is not good at the end points.

2. Since sin k
L
x  2L  sin k

L
x  2k  sin kx

L
, we see that the Fourier series yields

fx  2L  fx  Fourier series has period 2L. For −L  x  0

we have∑
1


k sin kx

L
 ∑

1


k sin

−k−x
L

 −∑
1


k sin

k−x
L

− L  x  0  L  −x  0
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 −f−x, where fx is value of series in 0  x  L.

Therefore the Fourier sine series converges to function Fx where

Fx 
fx 0  x  L

−f−x − L  x  0
Fx  2L  Fx

This is the odd periodic extension of fx with period 2L. Unless fkL  0 Fx will be discontinuous at
L,2L, . . . Note that the function fx is given on 0,L only, where the Fourier Sine series extends it to a
function Fx which is define on −  x  .

Suppose that the graph of the function fx is given by the figure below.

Then the Fourier sine series generates a function Fx defined on -  x   whose graph is given below.
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Example Find the Fourier sine series of

fx 
1 0  x  

2

0 
2
 x  

Now

fx ∑ n sin nx
L

∑
1



n sinnx,

since 2L  2  L  .
The formula above for the coefficients in the Fourier sine series implies

n  2
L 0

L
fx sin nx

L
dx  2

 0


fx sinnxdx

n  2
 0


2

1  sinnxdx  2
  

2


0  sinnxdx  − 2


cosnx

n |0


2

 − 2
n cos n

2
− 1

11



n 
2
n n odd

−2
n −1

n
2 − 1 n even

Therefore

fx ∑
1



n sinnx

 2
 sinx  2

2
sin2x  1

3
sin3x  0  sin4x  1

5
sin5x  2

6
sin6x 

Note that our function fx on 0 ≤ x ≤  is extended to the following on −  x  .

What we have done with sine functions can be done with cosine functions.

Fourier Cosine Series.

This comes from eigenvalue problem

D.E. y′′  y  0 B.C. y′0  y′L  0

n  n22

L2

are the eigenvalues and
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n  cos nx
L

are the eigenfunctions, n  0,1,2, . . . .

Note 0  0  0  1 which is an eigenfunction. Now we want to write

fx  0 ∑
1



n cos nx
L

Proceeding as above in our derivation of the constants in the Fourier Sine series, we get for the constants in the
Fourier Cosine series

n  2
L 0

L
fxcos nx

L
dx n  1,2,3,… 0  1

L 0
L

fxdx

To see where the formula for 0 comes from note
 0, fx  0,00  1,1  0

 0 


0

L
1  fxdx


0

L
12dx

 1
L


0

L
fxdx.

Note the book writes

fx~ a0

2
∑

1



an cos nx
L

and

an  2
L 0

L
fxcos nx

L
dx n − 0,1,2,…

Thus

0 
a0

2

Again the Fourier series is periodic with period 2L. However, now f−x  fx since cosine is an even function.
Here the Fourier Cosine series extends fx which is given on 0,L to a function Fx which is defined on
−  x   as

Fx 
fx 0  x  L

f−x − L  x  0
Fx  2L  Fx.

If the graph of fx looked as below
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then Fx, the even extension of fx, would look like

Example. Find the Fourier Cosine series for fx  1, 0  x  4
L  4

fx  0 ∑
1


n cos nx

4
0  1

4


0

4
fxdx  1

4


0

4
1  dx  1

k  2
4


0

4
1  cos nx

4
dx  1

2

sin nx
4

n
4 0

4

 2
4n

sin0  0

Therefore fx  1 is its own Fourier Cosine series. The function is simply extended.
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Example Find the Fourier cosine series of

fx 
1 0  x  

2

0 
2
 x  

The graph of fx is given below.

Note that this is the same function as in the previous example.
Now

fx  b0 ∑
n1



bn cos nx
L

 b0 ∑
1



bn cosnx,

since the function is given on 0,L  L  .

b0  1
L 0

L
fxdx  1

 0

2

1dx  1
2

bn  2
L 0

L
fxcos n

L
x dx  2

 0

2

1  cosnxdx

 2
n sinnx0


2  2

n sin n
2

If n is even, then sin n
2

 0. When n is odd, say n  2k  1,k  0,1,2,… then sin n
2

 1, depending on
whether k is even or odd. Thus

bn 
0 n even

2
n −1

k n odd, n  2k  1,k  0,1,2,…

Thus
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fx  b0 ∑
1



bn cosnx  b0  b1 cosx  b2 cos2x 

 1
2
 2
 cosx  0cos2x − 2

2
cos3x  0cos4x  2

5 cos5x 

The graph of the even extension of the given function is

-8 -6 -4 -2 0 2 4 6 8

0.2

0.4

0.6

0.8

1.0

x

y

Example (a) Find the first four nonzero terms of the Fourier cosine series for the function

fx  x on 0  x  1

Solution:

fx  0 ∑
1



n cos nx
L

where

0  1
L 0

L
fxdx and n  2

L 0
L

fxcos nx
L

dx n  1,2,3,…

Here L  1 so

fx  0 ∑
1



n cosnx

0  1
1 0

1
xdx  1

2

n  2
1 0

1
xcosnxdx  2

n22
cosnx  nx sinnx |0

1

 2
n22

cosn − 1  2
n22

−1n − 1 n  1,2,3,…

Hence 1  − 4
2 , 2  0, 3  − 4

92 , 4  0, 5  − 4
252

Therefore

fx  1
2
− 4
2

cosx − 4
92

cos3x − 4
252

cos5x

Note: The book gives the formulas

fx 
0

2
∑

1



n cos nx
L

where

n  2
L 0

L
fxcos nx

L
dx n  0,1,2, 3,…

16



Using this formula we get

0  2
1 0

1
xdx  1

Therefore, the first term in the book’s formula for the Fourier cosine series is 0

2
 1

2
as before.

(b) Sketch the graph of the function represented by the Fourier cosine series in (a) on −3  x  3.

x

-3 -2 -1 0 1 2 3

0.5

1.0

x

y

Example (a) Find the Fourier sine series for the function

fx  x on 0  x  1

Solution:

fx ∑
1



k sin kx
L

where

k  2
L 0

L
fx sin kx

L
dx, k  1,2,3,…

Here L  1 so

fx ∑
1



k sinkx

where

k  2 
0

1
fx sinkxdx, k  1,2,3,…

Thus

k  2 
0

1
x sinkxdx  2 1

k2
sinkx − kxcoskx

0

1



 −2 1
k

cosk  2
k

−1k1 k  1,2,3,…

Thus
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fx  2
 ∑

1


−1k1

k
sinkx

(b) Sketch the graph of the function represented by the Fourier sine series in 5 (a) on −3  x  3.
Solution:
1

-3 -2 -1 1 2 3

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

x

y

Full Fourier Series (Omit)

This comes from the eigenvalue problem

D.E.y′′  y  0 B.C.y0  y2L y′0  y′2L 0 ≤ x ≤ 2L

The eigenvalues are

n  n22

L2

n  0,1,2, . . . , , whereas the eigenfunctions are

n  an cos nx
L

 bn sin 2x
L

n  0,1,2, . .

.
Note that for this problem the function fx is given on 0,2L since the eigenvalue problem is given on this
interval. This is a different interval than that for Fourier Sine and Fourier Cosine series.



fx  a0 ∑
n1



an cos nx
L

 bn sin nx
L

where

a0  1
2L 0

2L
fxdx, an  1

L 0
2L

fxcos nx
L

dx bn  1
L 0

2L
fx sin nx

L
dx
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Example Find full Fourier series for

fx 
1 0  x  

2

0 
2
 x  

2L    L  
2

a0  1
 0


fxdx  1

 0

2 1  dx  1

2

an  1

2


0


fxcos nx


2

dx  2
 0


2 1  cos2nx dx  2

 0

2 cos2nx dx  2


sin2nx

2n
|0


2  0

bn  2
 0


2 sin2nxdx  − 2


cos2nx

2n
|0


2  1

n cosn − cos0 n  1,2, . . .

bn  − 1
n −1

n − 1 
 2
n n odd

0 n even

fx  1
2
 2
 sin2x  1

3
sin6x  1

5
sin10x . . .

The Vibrating String

It may be shown that the equation governing a string of length L vibrating is

yxxx, t  ∂
2y
∂x2

 1
2

yttx, t 1

Equation 1 is called the wave equation. Suppose string is held fixed at the ends x  0 and x  L
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2a y0, t  0 t ≥ 0 B.C.

2b yL, t  0 t ≥ 0 B.C.

Also suppose at t  0 the string has displacement y  fx and is released from rest



3a yx, 0  fx 0 ≤ x ≤ L I.C.

3b ytx, 0  0 0 ≤ x ≤ L I.C.

In order to solve the above problem we shall assume yx, t  XxTt separation of variables
 yx  X ′T yxx  X ′′T ytt  XT ′′. Note that X ′,T ′, . . . are ordinary derivatives of X with respect to x and T
with respect to t. Now the P.D.E. 1



X ′′T  1
2

XT ′′


X ′′

X
 1
2

T ′′

T
.

Note that the left hand side is a function of x only, whereas the right hand side is a function of t only. This implies
that each side must equal the same constant. Therefore

X ′′

X
 1
2

T ′′

T
 k

Hence we get the two ordinary differential equations

X ′′ − kX  0 and T ′′ − 2kT  0

Now y0, t  X0Tt  0  X0  0, whereas yL, t  XLTt  0  XL  0. Therefore we must
solve the problem

X ′′ − kX  0 X0  XL  0.

There are three cases. If k  0  X ≡ 0. If k  0  X  c1e k x  c2e− k x.
and the boundary conditions  c1  c2  0.

For the case k  0, let k  −2



20



X ′′  2X  0 X0  XL  0

This is an eigenvalue problem. The solution to the DE is

X  c1 sinx  c2 cosx

X0  0  c2  0 whereas XL  0  c1 sin  0    n
L for n  1,2,3, . . . .

Since sin−x  − sinx we may disregard the negative values of n.
Therefore

Xnx  cn sin n
L

x n  1,2,3, . . .

For Tt we have the equation

T ′′  22T  0,

since k  −2. Thus

T̸nt  c sint  dcost  an sin n
L

t  bn cos nt
L

.

But ytx, 0  0  T ′0  0. Now T ′t  an  n
L

cos n
L

t − bn  n
L

sin nt
L

, so T ′0  0

 an  0 for all n .
Therefore

Tnt  bn cos nt
L

,

and we have finally that

ynx, t  XnxTnt  cn sin nx
L

 bn cos nt
L

Let cn  bn  dn.
We note that

ynx, t  dn sin nx
L

cos nt
L

n  1,2,3,…

satisfies the P.D.E. yxx  1
2

ytt 1 and the boundary conditions y0, t  yL, t  0 2a, 2b, as well as the

initial condition yt0  0 3b.

What about the condition yx, 0  fx? Notice that

yx, t ∑
1



dn sin nx
L

cos nt
L

is also a solution since of 1, 2a,b and 3b. Thus yx, t is solution of everything except condition 3a,
namely, yx, 0  fx.
But

21



yx, 0 ∑
1



dn sin nx
L

 fx.

Therefore if f has a Fourier sine series expansion we let



dn  2
L 0

L
fx sin nx

L
dx.

Now with these coefficients dn

yx, t ∑
1



dn sin nx
L

cos nt
L

is a solution to entire problem 1, 2a, 2b, 3a, 3b.

Example

yxx  ytt y0, t  yL, t  0

ytx, 0  0

yx, 0  2sin x
L

Here   1 and fx  2sin x
L

Now

yx, t ∑
1



dn sin nx
L

cos nt
L

dn  2
L 0

L
sin x

L
sin nx

L
dx  2

L 0
L

2sin x
L

sin nx
L

dx  0 n  2,3, . . .

d1  2
L 0

L
2 sin2 nx

L
dx  4

L 0
L 1 − cos 2nx

L
2

dx  4
L

x
2
−

sin2 nx
L

2n
L 0

L

 2

 solution is

yx, t  2sin n
L

cos t
L

.

Example Solve:
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P.D.E.: uxx − 16utt  0

B.C.’s: u0, t  0 ux1, t  0

I.C.: ux, 0  −3sin 5x
2

 23sin 11x
2

; utx, 0  0

Solution: We assume

ux, t  XxTt

The PDE implies
X ′′

X
 16 T ′′

T
 k k a constant

Then we have the two ordinary DEs

X ′′ − kX  0

T ′′ − 1
16

kT  0

The boundary conditions for Xx are

X0  X ′1  0

so that the eigenvalue problem for X is

X ′′ − kX  0 X0  X ′1  0

For nontrivial solutions we let k  −2, ≠ 0 and get

X ′′  2X  0

so

Xx  C1 sinx  C2 cosx

X0  0  C2  0

Thus

X ′x  C1cosx

and X ′1  0 

  2n  1
2

 n  0,1,2,…

Therefore

Xnx  an sin 2n  1
2

x n  0,1,2,…

Since

k  −2  2n  1
2

2
2

The equation for Tt becomes

T ′′  1
16

2n  1
2

2
2T  0

so

Tnt  bn sin 2n  1
8

t  cn cos 2n  1
8

t n  0,1,2,…

The BC utx, 0  0  T ′0  0. Since

Tn
′ t  bn

2n  1
8

cos 2n  1
8

t − cn
2n  1

8
 sin 2n  1

8
t

we see that bn  0 so that

Tnt  cn cos 2n  1
8

t n  0,1,2,…

Thus
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unx, t  XnxTnt  Dn sin 2n  1
2

xcos 2n  1
8

t n  0,1,2,…

Let

ux, t ∑
n0



unx, t ∑
n0



Dn sin 2n  1
2

xcos 2n  1
8

t

Then

ux, 0 ∑
n0



Dn sin 2n  1
2

x  −3sin 5x
2

 23sin 11x
2

Therefore

D2  −3 D5  23 Dn  0 n ≠ 2,5

The final solution is then

ux, t  −3sin 5x
2

cos 5t
8

 23sin 11x
2

cos 11t
8

ux, 0  − 3sin 5
2
x  23sin 11

2
x

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-20

-10

0

10

20

x

y

ux, . 1  − 3sin 5
2
xcos0.0625  23sin 11

2
xcos0.1375

ux, . 4  − 3sin 5
2
xcos0.25  23sin 11

2
xcos0.55

ux, . 6  − 3sin 5
2
xcos0.375  23sin 11

2
xcos0.825

ux, . 8  23sin 11
2
xcos1. 1

Example Solve

PDE uxx − 16utt  0

BCs u0, t  0 ux1, t  0

IC ux, 0  −6sin 3x
2

 13sin 11x
2

IC utx, 0  0

You must derive the solution. Your solution should not have any arbitrary constants in it. Show all steps.
Solution: Let ux, t  XxTt. Then the PDE implies

X ′′T  16XT ′′

or
X ′′

X
 16 T ′′

T
 −2

since we will need sines and cosines in the X part of the solution.
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Thus

X ′′  2X  0

T ′′  2

16
T  0

The BCs are

X0  X ′1  0

Xx  an sinx  bn cosx

X0  0 implies that bn  0, so

Xx  an sinx

X ′x  ancosx

so

X ′1  ancos  0

Hence   2n1
2
, n  0,1,2,… and

Xnx  An sin 2n  1
2

x n  0,1,2,…

Also

T ′′  2

16
T  T ′′  2n  122

64
T  0

Tnt  cn sin 2n  1
8

t  dn cos 2n  1
8

t

utx, 0  0 implies that cn  0 and

Tnt  dn cos 2n  1
8

t

Thus

unx. t  Bn sin 2n  1
2

xcos 2n  1
8

t n  0,1,2,…

Let

ux, t ∑
n0



unx. t ∑
n0



Bn sin 2n  1
2

xcos 2n  1
8

t

ux, 0 ∑
n0



Bn sin 2n  1
2

x  −6sin 3x
2

 13sin 11x
2

Therefore B1  −6,B5  13 and Bn  0 for n ≠ 1,5 so

ux, t  −6sin 3x
2

cos 3
8

t  13sin 11x
2

cos 11
8

t

Example Solve:

P.D.E.: uxx − 16utt  0

B.C.’s: u0, t  0 ux1, t  0

I.C.: ux, 0  −3sin 5x
2

 23sin 11x
2

; utx, 0  2 sin 3x
2

Solution: We assume

ux, t  XxTt

The PDE implies
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X ′′

X
 16 T ′′

T
 k k a constant

Then we have the two ordinary DEs

X ′′ − kX  0

T ′′ − 1
16

kT  0

The boundary conditions for Xx are

X0  X ′1  0

so that the eigenvalue problem for X is

X ′′ − kX  0 X0  X ′1  0

For nontrivial solutions we let k  −2, ≠ 0 and get

X ′′  2X  0

so

Xx  C1 sinx  C2 cosx

X0  0  C2  0

Thus

X ′x  C1cosx

and X ′1  0 

  2n  1
2

 n  0,1,2,…

Therefore

Xnx  an sin 2n  1
2

x n  0,1,2,…

Since

k  −2  2n  1
2

2
2

The equation for Tt becomes

T ′′  1
16

2n  1
2

2
2T  0

so

Tnt  bn sin 2n  1
8

t  cn cos 2n  1
8

t n  0,1,2,…

Thus

unx, t  XnxTnt  Dn sin 2n  1
2

x sin 2n  1
8

t  En sin 2n  1
2

xcos 2n  1
8

t n  0,1,2,…

Let

ux, t ∑
n0



unx, t ∑
n0



Dn sin 2n  1
2

x sin 2n  1
8

t  En sin 2n  1
2

xcos 2n  1
8

t

utx, t

∑
n0



Dn
2n  1

8
 sin 2n  1

2
xcos 2n  1

8
t − En

2n  1
8

 sin 2n  1
2

x sin 2n  1
8

t

Then

ux, 0 ∑
n0



En sin 2n  1
2

x  −3sin 5x
2

 23sin 11x
2
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Therefore

E2  −3 E5  23 En  0 n ≠ 2,5

utx. 0 ∑
n0



Dn
2n  1

8
 sin 2n  1

2
x  2 sin 3x

2

Thus D1
3
8

  2 so D1  16
3

and Dn  0 n ≠ 1

The final solution is then

ux, t  16
3

sin 3x
2

cos 3t
8
− 3sin 5x

2
cos 5t

8
 23sin 11x

2
cos 11t

8

The Heat Equation

Consider a cylinder parallel to x −axis

Let u denote the temperature in the cylinder. Suppose the ends x  0 and x  L are kept at zero temperature
whereas at t  0 the initial temperature distribution is u  fx. It may be shown that u  ux, t satisfies the
P.D.E.

uxx  1
k

ut 0  x  L, t  0, 1

where k is a constant and k  0
.
Equation 1 is called the heat equation. The physical conditions of the problem imply

B.C. u0, t  0  uL, t t ≥ 0 2

I.C. ux, 0  fx 0 ≤ x ≤ L 3

We want to determine ux, t, i.e. the temperature in the cylinder at any point x at any time t. Again we use
separation of variables. The assumption ux, t  XxTt leads to
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X ′′x
Xx

 1
k

T ′t
Tt

 −2

 X ′′  2X  0 X0  XL  0 and T ′  k2T  0.

 Xn  cn sin nx
L

n  1,2, . . . n  n
L



T ′  k n22

L2
T  0



Tt  dne−
n
L

2
kt



unx, t  ane−
n
L

2
kt sin nx

L

satisfies 1 and 2 

unx, t ∑
1



ane−
n
L

2
kt sin nx

L

also satisfies 1 and 2.

We need to satisfy 3 namely, ux, 0  fx However,

ux, 0 ∑
1



an sin nx
L

Thus we take an to be the Fourier sine coefficients of fx. Hence

an  2
L 0

L
fx sin nx

L
dx.

Remark. The factor e−
n
L

2
kt  0 as t   

t→
lim ux, t  0 as expected from the physical problem.

Example Solve the problem:

P.D.E.: uxx − 8ut  0

B.C.: u0, t  0 ux1, t  0

I.C.:ux, 0  −2sin 3
2

x  10sin 9
2

x

Solution: Let ux, t  XxTt. Then the PDE implies
X ′′

X
 8 T ′

T
 k k a constant

Then we have the two ODEs

28



X ′′ − kX  0

T ′ − 1
8

kT  0

The BCs for Xx are

X0  X ′1  0

The boundary conditions for Xx are

X0  X ′1  0

so that the eigenvalue problem for X is

X ′′ − kX  0 X0  X ′1  0

For nontrivial solutions we let k  −2, ≠ 0 and get

X ′′  2X  0

so

Xx  C1 sinx  C2 cosx

X0  0  C2  0

Thus

X ′x  C1cosx

and X ′1  0 

  2n  1
2

 n  0,1,2,…

Therefore

Xnx  an sin 2n  1
2

x n  0,1,2,…

The equation for Tt with k  −2  2n1
2

2
2 is

T ′  1
8

2n  1
2

2
2T  0

Thus

Tnt  bne−
1
8

2n1
2

22t n  0,1,2,…

Therefore we have

unx, t  Dn sin 2n  1
2

xe−
1
8

2n1
2

22t n  0,1,2,…

To satisfy the initial condition we let

ux, t ∑
n0



Dn sin 2n  1
2

xe−
1
8

2n1
2

22t

Now

ux, 0 ∑
n0



Dn sin 2n  1
2

x  −2sin 3
2

x  10sin 9
2

x

This means

D1  −2 D4  10 and Dn  0, n ≠ 1,2

The solution to the problem is then

ux, t  −2sin 3
2

xe−
1
8

3
2

22t  10sin 9
2

xe−
1
8

9
2

22t
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Additional Examples

Example Wave Equation Example

Problem 1 Section 10.6

Find a formal solution to the vibrating string problem governed by the given initial-boundary value problem.

utt  uxx, 0  x  1, t  0

u0, t  u1, t  0, t  0

ux, 0  x1 − x, 0  x  1

utx, 0  sin7x, 0  x  1

Let ux, t  XxTt. Then the PDE leads to
X ′′

X
 T ′′

T
 −2

We then have two ODEs

X ′′  2X  0

T ′′  2T  0

Therefore

Xx  acosx  b sinx

The BCs for Xx are X0  X1  0. Thus, a  0 and   n, n  1,2,… and

Xnx  cn sinnx n  1,2,…
Also

Tnt  dn cosnt  en sinnt n  1,2,…
so

unx, t  an cosnt  bn sinnt sinnx n  1,2,…

Thus we let

ux, t ∑
n1



unx, t ∑
n1



an cosnt  bn sinnt sinnx

We want

ux, 0  x1 − x ∑
n1



an sinnx

Therefore the constants an are given by the formula for the Fourier sine series coefficients with L  1 so

an  2
1 0

1
x1 − x sinnxdx

 2 
0

1
x sinnxdx  

0

1
x2 sinnxdx

Integration by parts yields


0

1
x sinnxdx  − 1

n cosn  − −1
n

n

and
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0

1
x2 sinnxdx  − 1

n cosn − 2
n22

− 1
n cosn  1

n

 − −1
n

n 
2−1n − 1

n33

Therefore for n  1,2,…

an  2 − −1
n

n  −1n

n − 2−1n − 1
n33

 − 4−1n − 1
n33

Note that

an 
0 if n is even
8

n33 if n is odd

Since

utx, t ∑
n1



−ann sinnt  bnncosnt sinnx

then

utx, 0 ∑
n1



bnn sinnx  sin7x

Hence 7b7  1 so b7  1
7 and bn  0 for n ≠ 7.

Substituting these constants into the expression

ux, t ∑
n1



unx, t ∑
n1



an cosnt  bn sinnt sinnx

above and letting n  2k  1, k  0,1,2,… since n is odd yields

ux, t  1
7 sin7t sin7x ∑

k0


8

2k  13
cos2k  1t sin2k  1x

Example Use separation of variables, ux, t  XxTt, to find two ordinary differential equations which
Xx and Tt must satisfy to be a solution of

− 3x2t4 ∂2u
∂x2

 x − 24t  63 ∂2u
∂t2

 0.

Note: Do not solve these ordinary differential equations.
Solution: uxx, t  X

′
xTt,uxx  X ′′T

− 3x2t4X ′′xTt  x − 24t  63XxT ′′t  0



−3x2X ′′

x − 24X
 − t  63T ′′

t4T
 k.



3x2X ′′  kx − 24X  0 and t  63T ′′  kt4T  0.
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Example Solve

PDE uxx  4utt

BCS ux0, t  0 ux, t  0

ICs ux, 0  0 utx, 0  −9cos4x  16cos8x

You must derive the solution. Your solution should not have any arbitrary constants in it.
Solution:
Let ux, t  XxTt. Then differentiating and substituting in the PDE yields

X ′′T  4XT ′′


X ′′

X
 4 T ′′

T
Using the argument that the left hand side is purely a function of x and the right hand side is purely a function of t,
and the only way that they can be equal is if they are equal to a constant, we get

X ′′

X
 4 T ′′

T
 k k a constant

This yields the two ordinary differential equations

X ′′ − kX  0 and T ′′ − 1
4

kT  0

The boundary condition ux0, t  0 implies, since uxx, t  X ′xTt that
X ′0Tt  0. We cannot have Tt  0, since this would imply that ux, t  0. Thus X ′0  0. Similarly, the
boundary condition ux, t  0 leads to X ′  0.

We now have the following boundary value problem for Xx :

X ′′ − kX  0 X ′0  X ′  0

For k  0, the only solution is X  0. For k  0 we have X  Ax  B. X ′x  A, so the BCs imply that
X ′0  X ′  A  0.

Xx  B, B ≠ 0

is a nontrivial solution corresponding to the eigenvalue k  0.

For k  0, let −k  2, where  ≠ 0. Then we have the equation

X ′′  2X  0

and

Xx  c1 sinx  c2 cosx

X ′x  c1cosx − c2 sinx

X ′0  c1  0

so c1  0.

X ′  −c2 sin  0
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Therefore   n, n  1,2,… and the solution is

k  −n2 Xnx  an cosnx n  1,2,3,…

The case k  0 implies that the equation for T becomes T ′′  0, so T  At  B. The initial condition ux, 0  0
implies XxT0  0 so that T0  0. Thus B  0 and T  At for k  0.
Substituting the values of k  −n2 into the equation for Tt leads to

T ′′  n2

4
T  0

which has the solution

Tnt  Bn sin nt
2
 Cn cos nt

2
, n  1,2,3, . . .

The initial condition ux, 0  0 implies XxT0  0 so that T0  0. Thus cn  0. For n  0 the equation for
T becomes T ′′  0, and has the solution Tt  B0t  C0. The condition T0  0 implies that C0  0, so
T0t  B0t
We now have the solutions

unx, t  XnxTnt  An cosnx sin nt
2

n  1,2,3, . . .

u0x, t  A0t

Since the boundary conditions and the equation are linear and homogeneous, it follows that

ux, t ∑
n0



unx, t  A0t ∑
n1



An cosnx sin nt
2

satisfies the PDE, the boundary conditions, and the first initial condition. Since

utx, t  A0 ∑
n1



An
n
2

cosnxcos nt
2

the last initial condition leads to

utx, 0  −9cos4x  16cos8x  A0 ∑
n1



An
n
2

cosnx.

Matching the cosine terms on both sides of this equation leads to

A4
4
2

 −9 so that A4  − 9
2

and A8
8
2

 16 so that A8  4. All of the other constants must be zero, since

there are no cosine terms or constant terms on the left to match with. Thus

ux, t  − 9
2

cos4x sin2t  4cos8x sin4t
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Example Consider the non-homogeneous problem

P.D.E. : uxx  9ut

B.C.′s : ux0, t  0 u1, t  2

I.C. : ux, 0  −3cos 7
2

x  2

i)
Let

vx, t  ux, t − 2

and show that vx, t satisfies the
homogeneous problem

P.D.E. : vxx  9vt

B.C. : vx0, t  0 v1, t  0

I.C. : vx, 0  −3cos 7
2

x

Solution to i)

uxxx, t  vxxx, t uxx, t  vxx, t

uttx, t  vttx, t utx, t  vtx, t

u1, t  2 and ux, t − 2  vx, t  v1, t  0

ux0, t  0  vx0, t  0

ux, 0  −3cos 7
2

 2 and ux, t − 2  vx, t  vx, 0  −3cos 7
2

ii)
Solve the above problem for vx, t.
Solution to ii) Let vx, t  XxTt

then

X ′′T  9XT ′  X ′′

X
 9 T ′

T
 k

resulting in the ordinary differential equations:

X ′′ − kX  0 and T ′ − k
9

T  0

Boundary Conditions become:

X ′0Tt  0 and X1Tt  0

 X ′0  0 and X1  1

Solving the differential equation X ′′ − kX  0 consider all values of k
k  0 let k  −u2; u  0
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X ′′  u2X  0

has the solution:

Xx  c1 cosux  c2 sinux

and

X ′x  −c1u sinux  c2ucosux

B.C.  X1  c1 cosu  c2 sinu  0 and X ′0  c2u  0
 c2  0 thus c1 cosu  0

 un 
2n − 1

2
n  1,2, . . .

 kn  −
2n − 122

4
n  1,2, . . .

so

Xnx  cn cos
2n − 1

2
x n  1,2, . . .

The other cases for k, namely k  0 and k  0 yield only the trivial solution since
k  0  X ′′  0 which has the solution: Xx  c1x  c2 and X ′x  c1

B.C.  X1  c1  c2  0 and X ′0  c1  0  c2  0
thus Xx ≡ 0 is the trivial solution.

k  0 let k  u2; u  0
X ′′ − u2X  0 has the solution: Xx  c1eux  c2e−ux

and X ′x  c1ueux − c2ue−ux

B.C.  X ′0  c1u − c2u  0  c1  c2

and X1  c1eu  c2e−u  0  c1eu  c1e−u  0  c1eu  e−u   0
 c1  c2  0 thus Xx ≡ 0 is the trivial solution.

Using the non-trivial solution

kn  −
2n − 122

4
Xnx  cn cos

2n − 1
2

x, n  1,2, . . .

the equation

T ′ − k
9

T  0

becomes

T ′  2n − 122

36
T  0

solving by separating

T ′

T
 − 2n − 122

36
  T ′

T
 − 2n − 122

36

 lnT  − 2n − 122

36
t  c  Tnt  cne−

2n−122

36 t

Therefore

vnx, t  XnxTnt

 cn cos
2n − 1x

2
e−

2n−122

36 t

so we let
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vx, t ∑
n1



cn cos
2n − 1x

2
e−

2n−122

36 t

Using I.C. to compute coefficients we have

vx, 0 ∑
n1



cn cos
2n − 1x

2
 −3cos 7x

2

by equating coefficients: c1  0,c2  0,c3  0,c4  −3,c4  0, . . .

vx, t  −3cos 7x
2

e−
492

36 t

is the solution.

iii) Now use the results of b) i) and ii) to find ux, t.
Solution to iii)

ux, t  vx. t  2

so

ux, t  −3cos 7x
2

e−
492

36 t  2

36


