Ma 221

BOUNDARY VALUE PROBLEMS

Homogeneous Boundary Value Problems

Consider the following problem:

$$
\begin{align*}
& \text { D.E. } L[y]=a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0 \quad a \leq x \leq b \\
& \left.\begin{array}{ll}
\text { B.C. } \alpha_{1} y(a)+\beta_{1} y^{\prime}(a)=0 & \alpha_{1}^{2}+\beta_{1}^{2} \neq 0 \\
\text { B.C. } \alpha_{2} y(b)+\beta_{2} y^{\prime}(b)=0 & \alpha_{2}^{2}+\beta_{2}^{2} \neq 0
\end{array}\right\} \tag{1}
\end{align*}
$$

Here $\alpha_{1}, \alpha_{2}, \beta_{1}$, and β_{2} are constants.

Example

$$
y^{\prime \prime}=0 \quad y^{\prime}(0)=y^{\prime}(1)=0
$$

(Here $\alpha_{1}=\alpha_{2}=0$)

$$
\begin{aligned}
& \Rightarrow y=A x+b \\
& \Rightarrow y(x)=b \quad y^{\prime}(x)=A \quad y^{\prime}(0)=y^{\prime}(1)=A=0 \\
& \Rightarrow \text { any constant. }
\end{aligned}
$$

The Boundary Value Problem (1) is called linear and homogeneous since if $u_{1}(x)$ and $u_{2}(x)$ satisfy it, $\Rightarrow c_{1} u_{1}(x)+c_{2} u_{2}(x)$ also does.

Example

$$
y^{\prime \prime}-6 y^{\prime}+5 y=0 \quad y(0)=1 \quad y(2)=1
$$

Solution: The characteristic equation is

$$
r^{2}-6 r+5=(r-5)(r-1)=0
$$

so $r=1,5$

Thus

$$
\begin{gathered}
y(x)=c_{1} e^{x}+c_{2} e^{5 x} \\
y(0)=c_{1}+c_{2}=1 \\
y(2)=c_{1} e^{2}+c_{2} e^{10}=1
\end{gathered}
$$

Thus from the first equation $c_{2}=1-c_{1}$ and the second equation becomes

$$
\begin{gathered}
c_{1} e^{2}+\left(1-c_{1}\right) e^{10}=1 \\
c_{1}\left(e^{2}-e^{10}\right)=1-e^{10} \\
c_{1}=\frac{1-e^{10}}{e^{2}-e^{10}} \\
c_{2}=1-\frac{1-e^{10}}{e^{2}-e^{10}}=\frac{1}{e^{2}-e^{10}}\left(e^{2}-1\right)
\end{gathered}
$$

$$
y=\frac{1-e^{10}}{e^{2}-e^{10}} e^{x}+\frac{e^{2}-1}{e^{2}-e^{10}} e^{5 x}
$$

SNB check

$$
\begin{aligned}
y^{\prime \prime}-6 y^{\prime}+5 y & =0 \\
y(0) & =1 \\
y(2) & =1
\end{aligned}
$$

, Exact solution is: $\left\{\frac{e^{5 x}}{e^{2}-e^{10}}\left(e^{2}-1\right)-\frac{e^{x}}{e^{2}-e^{10}}\left(e^{10}-1\right)\right\}$

Remark. The homogeneous Boundary Value Problem (B.V.P.) always possesses the solution $y(x)=0$.

Question. When does there exist a nonzero solution to (1)?
Let $y_{1}(x)$ and $y_{2}(x)$ be two linearly independent solutions of $L[y]=0 . \quad \Rightarrow y(x)=c_{1} y_{1}+c_{2} y_{2}$ is the general solution of the DE.

$$
\begin{aligned}
\text { B.C. } \Rightarrow & \left.\begin{array}{l}
\alpha_{1} y(a)+\beta_{1} y^{\prime}(a)=0 \\
\alpha_{2} y(b)+\beta_{2} y^{\prime}(b)=0
\end{array}\right\} \quad \text { and } y(x)=c_{1} y_{1}+c_{2} y_{2} \Rightarrow \\
& c_{1}\left[\alpha_{1} y_{1}(a)+\beta_{1} y_{1}^{\prime}(a)\right]+c_{2}\left[\alpha_{1} y_{2}(a)+\beta_{1} y_{2}^{\prime}(a)\right]=0 \\
& c_{1}\left[\alpha_{2} y_{1}(b)+\beta_{2} y_{1}^{\prime}(b)\right]+c_{2}\left[\alpha_{2} y_{2}(b)+\beta_{2} y_{2}^{\prime}(b)\right]=0 .
\end{aligned}
$$

The above are two equations for c_{1} and c_{2}. We want a nontrivial solution. Let $B_{a}(u)=\alpha_{1} u(a)+\beta_{1} u^{\prime}(a)$ and $B_{b}(u)=\alpha_{2} u(b)+\beta_{2} u^{\prime}(b)$. Then the determinant of the coefficients of the above system must equal zero. Thus we require

$$
\left|\begin{array}{ll}
B_{a}\left(y_{1}\right) & B_{a}\left(y_{2}\right) \tag{2}\\
B_{b}\left(y_{1}\right) & B_{b}\left(y_{2}\right)
\end{array}\right|=0
$$

Theorem 1. The homogeneous linear B.V.P. (1) has a nontrivial solution if and if (2) holds.

Theorem 2. If $u(x)$ is a particular nontrivial solution of the B.V.P. (1), then all solutions are given by $y=c u(x)$ where c is an arbitrary constant.

Proof. Let $v(x)$ be any solution, $u(x)$ a particular solution of the B.V.P. (1) $\Rightarrow \alpha_{1} u(a)+\beta_{1} u^{\prime}(a)=0$ and $\alpha_{1} v(a)+\beta_{1} v^{\prime}(a)=0$ since u and v both satisfy the first B.C. These equations may be regarded as equations for α_{1}, β_{1}. However, since by assumption α_{1} and β_{1} are not both zero \Rightarrow

$$
\left|\begin{array}{cc}
u(a) & u^{\prime}(a) \\
v(a) & v^{\prime}(a)
\end{array}\right|=0=W[u, v]_{x=a} \Rightarrow W[u(x), v(x)]=0 \text { for } a \leq x \leq b
$$

$\Rightarrow u$ and v are two LD solutions of the D.E. \Rightarrow there exist constants $c_{1}, c_{2} \neq 0$ such that $c_{1} u(x)+c_{2} v(x)=0$ for $a \leq x \leq b \Rightarrow v(x)=-\frac{c_{1}}{C_{2}} u(x)=c u(x)$.

Example

$$
y^{\prime \prime}-\lambda^{2} y=0 \quad \lambda \neq 0 \quad y(0)=y(1)=0
$$

The general solution is $y=c_{1} e^{\lambda x}+c_{2} e^{-\lambda x}$. The B.C $y(0)=0 . \Rightarrow c_{1}+c_{2}=0$, whereas the condition $y(1)=0$
leads to
$c_{1} e^{\lambda}+c_{2} e^{-\lambda}=0$. The two equations for c_{1} and c_{2} are

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
c_{1} e^{\lambda}+c_{2} e^{-\lambda} & =0
\end{aligned}
$$

The determinant of the coefficients is $\left|\begin{array}{ll}1 & 1 \\ e^{\lambda} & e^{-\lambda}\end{array}\right| \neq 0 . \Rightarrow c_{1}=c_{2}=0 \Rightarrow$ the only solution is $y \equiv 0$.

Eigenvalue Problems

The following special kind of B.V.P. is called an eigenvalue problem.

Here $L[y]=a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y$, and λ is a parameter.

Again $y \equiv 0$ is a solution for all λ. However, we are interested in nontrivial (nonzero) solutions.

Definition. If a nontrivial solution of the B.V.P. ($*$) exists for a value $\lambda=\lambda_{i}$, then λ_{i} is called an eigenvalue of L (relevant to the B.Cs.). The corresponding nontrivial solution $y_{i}(x)$ is called an eigenfunction.
Example Find the eigenvalues and eigenfunctions for

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(1)=0
$$

We must consider three cases; $\lambda<0, \lambda=0$, and $\lambda>0$.
I. $\lambda<0$. Let $\lambda=-\alpha^{2}$ where $\alpha \neq 0$. Then the differential equation becomes

$$
y^{\prime \prime}-\alpha^{2} y=0
$$

and has the general solution

$$
y=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}
$$

The boundary conditions \Rightarrow
$y^{\prime}(0)=c_{1} \alpha-c_{2} \alpha=0$ or $c_{1}=c_{2}$, and $y(1)=c_{1} e^{\alpha}+c_{2} e^{-\alpha}=0 . \Rightarrow c_{1}=c_{2}=0$.
Thus for $\lambda<0$, the only solution is $y=0$.
II. $\lambda=0$. The solution is $y=c_{1} x+c_{2}$. The BCs imply $c_{1}=c_{2}=0$. Again the only solution is $y=0$. III. $\lambda>0$. Let $\lambda=\beta^{2}$ where $\beta \neq 0$. The DE becomes

$$
y^{\prime \prime}+\beta^{2} y=0
$$

and has the general solution

$$
y=c_{1} \sin \beta x+c_{2} \cos \beta x
$$

The BCs imply

$$
\begin{gathered}
y^{\prime}(0)=c_{1} \beta \cos 0-c_{2} \beta \sin 0=c_{1} \beta=0 . \quad \text { Hence } \quad c_{1}=0, \text { since } \beta \neq 0 . \quad \text { Thus } \\
y=c_{2} \cos \beta x .
\end{gathered}
$$

Now $y(1)=c_{2} \cos \beta=0$. Since we want a nontrivial solution we cannot have $c_{2}=0$.
Hence

$$
\cos \beta=0 \Rightarrow \beta=\frac{2 n+1}{2} \pi, n=0, \pm 1, \pm 2, \ldots
$$

We therefore have the eigenvalues

$$
\lambda_{n}=\left(\frac{2 n+1}{2}\right)^{2} \pi^{2}
$$

and eigenfunctions

$$
y_{n}(x)=C_{n} \cos \left(\frac{2 n+1}{2}\right) x
$$

for $n=0,1,2, \ldots$ Note the negative values of n do not give additional eigenfunctions since $\cos (-t)=\cos t$.
Example Find the eigenvalues and eigenfunctions for

$$
y^{\prime \prime}-12 y^{\prime}+4(7+\lambda) y=0 \quad y(0)=y(5)=0
$$

Solution: The characteristic equation is

$$
r^{2}-12 r+4(7+\lambda)=0
$$

so

$$
r=\frac{+12 \pm \sqrt{144-4(4)(7+\lambda)}}{2}=6 \pm 2 \sqrt{2-\lambda}
$$

Thus we have 3 cases to deal with, $2-\lambda<0,2-\lambda=0$, and $2-\lambda>0$.
Case I: $2-\lambda>0$. Let $2-\lambda=\alpha^{2}$ where $\alpha \neq 0$. The the general homogeneous solution is

$$
y(x)=C_{1} e^{(6+2 \alpha) x}+C_{2} e^{(6-2 \alpha) x}
$$

The BCs imply

$$
\begin{aligned}
C_{1}+C_{2} & =0 \\
C_{1} e^{(6+2 \alpha) 5}+C_{2} e^{(6-2 \alpha) 5} & =0
\end{aligned}
$$

, Solution is: $\left\{C_{2}=0, C_{1}=0\right\}$. Thus $y=0$ and there are no eigenvalues for this case.

Case II: $\lambda=2$. Then

$$
y(x)=C_{1} e^{6 x}+C_{2} x e^{6 x}
$$

The BCs imply

$$
\begin{aligned}
C_{1} & =0 \\
C_{2}(5) e^{30} & =0 \Rightarrow C_{2}=0
\end{aligned}
$$

Therefore $\lambda=2$ is not an eigenvalue.

Case III: $2-\lambda<0$. Let $2-\lambda=-\beta^{2}$ where $\beta \neq 0$. Then $r=6 \pm 2 \beta$ i. The solution to the DE is

$$
y(x)=C_{1} e^{6 x} \sin 2 \beta x+C_{2} e^{6 x} \cos 2 \beta x
$$

The BCs imply

$$
\begin{aligned}
& y(0)=C_{2}=0 \\
& y(5)=C_{1} e^{30} \sin 10 \beta=0
\end{aligned}
$$

Thus

$$
10 \beta=n \pi, \quad n=1,2, \ldots
$$

or

$$
\beta=\frac{n \pi}{10} \quad n=1,2, \ldots
$$

and the eigenvalues are

$$
\lambda=2+\beta^{2}=2+\frac{n^{2} \pi^{2}}{100} \quad n=1,2, \ldots
$$

The eigenfunctions are

$$
y_{n}(x)=A_{n} e^{6 x} \sin \left(\frac{n \pi}{5}\right) x
$$

Example

$$
y^{\prime \prime}+\lambda y=0 \quad y(\pi)=y(2 \pi)=0
$$

Solution: There are 3 cases to consider. $\lambda<0, \lambda=0$, and $\lambda>0$.
I. $\lambda<0$. Let $\lambda=-\alpha^{2}$ where $\alpha \neq 0$. Then the differential equation becomes

$$
y^{\prime \prime}-\alpha^{2} y=0
$$

and has the general solution

$$
y(x)=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x} .
$$

Then

$$
\begin{aligned}
y(\pi) & =c_{1} e^{\alpha \pi}+c_{2} e^{-\alpha \pi}=0 \\
y(2 \pi) & =c_{1} e^{2 \alpha \pi}+c_{2} e^{-2 \alpha \pi}=0
\end{aligned}
$$

Thus from the first equation

$$
c_{2}=-c_{1} e^{2 \alpha \pi}
$$

and the second equation implies

$$
c_{1}\left(e^{2 \alpha \pi}-1\right)=0
$$

Hence $c_{1}=0$ and thus $c_{2}=0$, so $y=0$ is the only solution. There are no negative eigenvalues.
II. $\lambda=0$. Then we have $y^{\prime \prime}=0$ so

$$
\begin{gathered}
y(x)=c_{1} x+c_{2} \\
y(\pi)=c_{1} \pi+c_{2}=0 \\
y(2 \pi)=2 c_{1} \pi+c_{2}=0
\end{gathered}
$$

Therefore $c_{1}=c_{2}=0$ and $y=0$, so 0 is not an eigenvalue.
III. $\lambda>0$. Let $\lambda=\beta^{2}$ The DE becomes

$$
y^{\prime \prime}+\beta^{2} y=0
$$

so

$$
y(x)=c_{1} \sin \beta x+c_{2} \cos \beta x
$$

The initial conditions yield

$$
\begin{aligned}
y(\pi) & =c_{1} \sin \beta \pi+c_{2} \cos \beta \pi=0 \\
y(2 \pi) & =c_{1} \sin 2 \beta \pi+c_{2} \cos 2 \beta \pi=0
\end{aligned}
$$

This system will have a non-trivial solution if and only if

$$
\left|\begin{array}{cc}
\sin \beta \pi & \cos \beta \pi \\
\sin 2 \beta \pi & \cos 2 \beta \pi
\end{array}\right|=0
$$

That is if and only if

$$
\sin \beta \pi \cos 2 \beta \pi-\cos \beta \pi \sin 2 \beta \pi=\sin (\beta \pi-2 \beta \pi)=-\sin \beta \pi=0
$$

Thus we must have

$$
\beta \pi=n \pi \quad n=1,2,3, \ldots
$$

or

$$
\beta=n \quad n=1,2,3, \ldots
$$

Hence the eigenvalues are

$$
\lambda=\beta^{2}=n^{2} \quad n=1,2,3, \ldots
$$

The two equations above for c_{1} and c_{2} become

$$
\begin{array}{r}
c_{1} \sin n \pi+c_{2} \cos n \pi=0 \\
c_{1} \sin 2 n \pi+c_{2} \cos 2 n \pi=0
\end{array}
$$

Thus $c_{2}=0$ and c_{1} is arbitrary. The eigenfunctions are

$$
y_{n}(x)=a_{n} \sin n x
$$

Remark. If \vec{u} and \vec{v} are 2 vectors, then $\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v}=0$
$\vec{u}=\left(x_{1}, \ldots, x_{n}\right) \quad \vec{v}\left(y_{1}, \ldots, y_{n}\right)$ As $n \rightarrow \infty \quad \vec{u} \cdot \vec{v} \rightarrow \int x_{i} y_{i}$.

Definition. Let $f(x), g(x)$ be two continuous functions on $[a, b]$. We define the inner product of f and g in an interval $a \leq x \leq b$, denoted by $\langle f, g\rangle$, by

$$
<f, g>=\int_{a}^{b} f(x) g(x) d x
$$

Definition. Two functions f and g are said to be orthogonal on $[a, b]$ if

$$
<f, g>=0
$$

Example. $\int_{0}^{\pi} \sin x \cos x d x=\left.\frac{\sin ^{2} x}{2}\right|_{0} ^{\pi}=0$ Therefore $\sin x$ and $\cos x$ are orthogonal on $[0, \pi]$.

Definition. The set of functions $\left\{f_{1}, f_{2}, \ldots\right\}$ is called an orthogonal set $<f_{i}, f_{j}>=0 \quad i \neq j$.

Example. $\left\{1, \cos \frac{\pi x}{L}, \cos \frac{2 \pi x}{L}, \ldots, \cos \frac{n \pi x}{L}, \ldots\right\}$ is an orthogonal set on [0, L]
Remark. For vectors we have the following: if $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$ then the length of $\vec{u}=\|\vec{u}\|=\left(\sum u_{i}^{2}\right)^{\frac{1}{2}}=\sqrt{\vec{u}} \cdot \vec{u}$. Motivated by this we have the following definition.

Definition. Let $f(x)$ be a continuous function on $\mathrm{a} \leq x \leq b$. Then the norm of f is defined by

$$
\|f\|=\sqrt{\langle f, f\rangle}=\sqrt{\int_{a}^{b} f^{2}(x) d x}
$$

Example. $0 \leq x \leq 1 \quad\left\|x^{2}\right\|^{2}=<x^{2}, x^{2}>=\int_{0}^{1} x^{4} d x=\left.\frac{x^{5}}{5}\right|_{0} ^{1}=\frac{1}{5}$
$\Rightarrow\left\|x^{2}\right\|=\frac{1}{\sqrt{5}}$.
Remark. Let $y=\frac{x^{2}}{\left\|x^{2}\right\|}=\frac{x^{2}}{\sqrt{5}} \Rightarrow\|y\|=\frac{\left\|x^{2}\right\|}{\sqrt{5}}=1$.
Definition. If $\|f\|=1$, then f is said to be normalized.

Definition. A set of functions $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ is called orthonormal if
(1) the set is orthogonal, and
(2) each has norm 1. Therefore $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ is an orthonormal set \Leftrightarrow

$$
<\phi_{i}, \phi_{j}>=\delta_{i j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

Example $\{\sin (n x)\}=\{\sin x, \sin 2 x, \sin 3 x, \ldots\}$ on $[0, \pi]$ is an orthogonal set since

$$
\begin{aligned}
& <\sin (m x), \sin (n x)>=\int_{0}^{\pi} \sin m x \sin n x d x=\frac{1}{2} \int_{0}^{\pi}[\cos (m-n) x-\cos (m+n) x] d x \quad m \neq n \\
& =\frac{1}{2}\left[\frac{\sin (m-n) x}{m-n}-\frac{\sin (m+n) x}{m-n}\right]_{0}^{\pi} \\
& =\frac{1}{2}\left[\frac{\sin (m-n) \pi}{m-n}-\frac{\sin (m+n) \pi}{m+n}\right]=0 \quad m \neq n
\end{aligned}
$$

since m and n are integers.
Now

$$
\begin{aligned}
& <\sin n x, \sin n x>=\int_{0}^{\pi} \sin ^{2} n x d x \\
& =\frac{1}{2} \int_{0}^{\pi}(1-\cos 2 n x) d x \\
& =\left.\frac{1}{2}\left(x-\frac{\sin 2 n x}{2 n}\right)\right|_{0} ^{\pi}=\frac{\pi}{2} .
\end{aligned}
$$

Therefore

$$
\|\sin n x\|=<\sin n x, \sin n x>^{\frac{1}{2}}=\sqrt{\frac{\pi}{2}}
$$

\Rightarrow this set is not orthonormal. We can make an orthonormal set from these functions by dividing each element in the original by $\sqrt{\frac{\pi}{2}} \Rightarrow\left\{\sqrt{\frac{2}{\pi}} \sin n x\right\}$ is orthonormal set $(n=1,2, \ldots)$.

Properties of the inner product.

$$
\begin{array}{r}
1 .<f, g>=<g, f>\text { since } \quad \int_{a}^{b} f(x) g(x) d x=\int_{a}^{b} g(x) f(x) d x \\
\text { 2. }<\alpha f+\beta g, h>=\alpha<f, h>+\beta<g, h>\text { since } \int(\alpha f+\beta g) d x=\alpha \int f d x+\beta \int g d x \\
\text { 3. } a .<f, f>=0 \text { iff }=0 \\
b .<f, f \gg 0 \text { iff } \neq 0
\end{array}
$$

Remarks. (1) It will be necessary when dealing with partial differential equations to "expand" an arbitrary function $f(x)$ in terms of an orthogonal set of functions $\left\{\psi_{n}\right\}$.
(2) Recall that in 3 space, if $\vec{u}_{1}=(1,0,0), \vec{u}_{2}=(0,1,0)$, and $\vec{u}_{3}=(0,0,1)$ then $\vec{v}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{3} u_{3}$.
Note that
$\left\langle\vec{u}_{1}, \vec{v}>=\vec{u}_{1} \cdot \vec{v}=\left\langle\vec{u}_{1}, \alpha_{1} \vec{u}_{1}+\alpha_{2} \vec{u}_{2}+\alpha_{3} \vec{u}_{3}\right\rangle=\left\langle\vec{u}_{1}, \alpha_{1} \vec{u}_{1}>+\left\langle\vec{u}_{1}, \alpha_{2} \vec{u}_{2}\right\rangle+\left\langle\vec{u}_{1}, \alpha_{3} \vec{u}_{3}\right\rangle\right.\right.$

$$
=\alpha_{1}<\vec{u}_{1}, \vec{u}_{1}>+\alpha_{2}<\vec{u}_{1}, \vec{u}_{2}>+\alpha_{3}<\vec{u}_{1}, \vec{u}_{3}>=\alpha_{1}
$$

Also $\left\langle\vec{u}_{2}, \vec{v}\right\rangle=\alpha_{2}$ and $\left\langle\vec{u}_{3}, \vec{v}\right\rangle=\alpha_{3}$.

Suppose we are given a set of orthogonal functions $\left\{\psi_{n}\right\}$ on $[0, L]$, and we desire to expand a function $f(x)$ given on $[0, L]$ in terms of them. Then we want

$$
f(x)=\sum_{n=1}^{\infty} \alpha_{n} \psi_{n}(x)
$$

Question. What does $\alpha_{k}=$?

Consider

$$
\begin{aligned}
& <\psi_{k}, f(x)>=<\psi_{k}, \sum_{1}^{\infty} \alpha_{n} \psi_{n}> \\
& =<\psi_{k}, \alpha_{1} \psi_{1}+\alpha_{2} \psi_{2}+\cdots> \\
& =\alpha_{1}<\psi_{k}, \psi_{1}>+\cdots+\alpha_{k}<\psi_{k}, \psi_{k}>+\alpha_{k+1}<\psi_{k}, \psi_{k+1}>+\cdots
\end{aligned}
$$

But $\left\langle\psi_{k}, \psi_{j}\right\rangle=0$ if $j \neq k$ since the set $\left\{\psi_{k}\right\}$ is orthogonal.
\Rightarrow
$\left.<\psi_{k}, f(x)\right\rangle=\alpha_{k}\left\langle\psi_{k}, \psi_{k}\right\rangle=\alpha_{k}\left\|\psi_{k}\right\|^{2}$

Therefore

$$
\begin{equation*}
\alpha_{k}=\frac{\int_{0}^{L} f(x) \psi_{k}(x) d x}{\left\|\psi_{k}\right\|^{2}}=\frac{\int_{0}^{L} f(x) \psi_{k}(x) d x}{\int_{0}^{L}\left[\psi_{k}(x)\right]^{2} d x} \quad k=1,2, \ldots \tag{*}
\end{equation*}
$$

$(*)$ is the formula for the coefficients in the expansion of a function $f(x)$ in terms of a set of orthogonal functions.

Ordinary Fourier Series

Fourier Sine Series

Consider the eigenvalue problem

$$
\text { D.E. } y^{\prime \prime}+\lambda y=0 \quad 0 \leq x \leq L \quad \text { B.C. } y(0)=y(L)=0
$$

We shall first solve this problem. There are 3 cases to consider $-\lambda<0, \lambda=0, \lambda>0$.
I. $\lambda<0$. Let $\lambda=-\alpha^{2}$ where $\alpha \neq 0$. The DE becomes

$$
y^{\prime \prime}-\alpha^{2} y=0
$$

So

$$
y(x)=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}
$$

Then $y(0)=0$ implies

$$
c_{1}+c_{2}=0
$$

so $c_{2}=-c_{1}$ and

$$
y(x)=c_{1}\left[e^{\alpha x}-e^{-\alpha x}\right]
$$

But then

$$
y(L)=c_{1}\left[e^{\alpha L}-e^{-\alpha L}\right]=0
$$

So $c_{1}=0$ and hence $c_{2}=0$ and thus $y(x)=0$ and there are no negative eigenvalues.
II. $\lambda=0$ The the equation becomes $y^{\prime \prime}=0$ and $y=c_{1} x+c_{2}$ and the BCs imply $y=0$.
III. $\lambda>0$. Let $\lambda=\beta^{2}$ where $\beta \neq 0$ The DE becomes

$$
y^{\prime \prime}+\beta^{2} y=0
$$

Thus

$$
y=c_{1} \sin \beta x+c_{2} \cos \beta x
$$

$y(0)=c_{2}=0$. Also

$$
y(L)=c_{1} \sin \beta L=0
$$

so

$$
\beta=\frac{n \pi}{L} \quad n=1,2,3, \ldots
$$

\Rightarrow

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \quad n=1,2,3, \ldots
$$

are the eigenvalues, whereas the eigenfunctions are

$$
\sin \sqrt{\lambda_{n}} x=\sin \frac{n \pi}{L} x=\psi_{n} n=1,2,3, \ldots
$$

These functions form an orthogonal set.

Hence if

$$
f(x)=\sum_{1}^{\infty} \alpha_{k} \sin \frac{k \pi x}{L}
$$

then from $(*)$ above

$$
\alpha_{k}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{k \pi x}{L} d x
$$

since

$$
\int_{0}^{L}\left[\psi_{k}(x)\right]^{2} d x=\frac{L}{2} .
$$

These formulas are for the Fourier sine series for $f(x)$ on $0<x<L$.
Remarks. 1. At $x=0$ and $x=L \quad \sum \alpha_{k} \sin \frac{k \pi x}{L}$ gives 0 for $f(x)$. Therefore unless $f(0)=f(L)=0$ the Fourier series is not good at the end points.
2. Since $\sin \frac{k \pi}{L}(x+2 L)=\sin \left(\frac{k \pi}{L} x+2 k \pi\right)=\sin \frac{k \pi x}{L}$, we see that the Fourier series yields $f(x+2 L)=f(x) \Rightarrow$ Fourier series has period $2 L$. For $-L<x<0$

$$
\text { we have } \begin{aligned}
\sum_{1}^{\infty} \alpha_{k} \sin \frac{k \pi x}{L}= & \sum_{1}^{\infty} \alpha_{k} \sin \left(\frac{-k \pi(-x)}{L}\right) \\
& =-\sum_{1}^{\infty} \alpha_{k} \sin \frac{k \pi(-x)}{L} \quad-L<x<0 \Rightarrow L>-x>0
\end{aligned}
$$

$$
=-f(-x) \text {, where } f(x) \text { is value of series in } 0<x<L
$$

Therefore the Fourier sine series converges to function $F(x)$ where

$$
F(x)=\left\{\begin{array}{rl}
f(x) & 0<x<L \\
-f(-x) & -L<x<0
\end{array} \quad F(x+2 L)=F(x)\right.
$$

This is the odd periodic extension of $f(x)$ with period $2 L$. Unless $f(\pm k L)=0 \quad F(x)$ will be discontinuous at $\pm L, \pm 2 L, \ldots$ Note that the function $f(x)$ is given on [0,L] only, where the Fourier Sine series extends it to a function $F(x)$ which is define on $-\infty<x<\infty$.

Suppose that the graph of the function $f(x)$ is given by the figure below.

Then the Fourier sine series generates a function $F(x)$ defined on $-\infty<x<\infty$ whose graph is given below.

Example Find the Fourier sine series of

$$
f(x)= \begin{cases}1 & 0<x<\frac{\pi}{2} \\ 0 & \frac{\pi}{2}<x<\pi\end{cases}
$$

Now

$$
f(x)=\sum \alpha_{n} \sin \frac{n \pi x}{L}=\sum_{1}^{\infty} \alpha_{n} \sin n x
$$

since $2 L=2 \pi \Rightarrow L=\pi$.
The formula above for the coefficients in the Fourier sine series implies

$$
\begin{aligned}
& \alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& \alpha_{n}= \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} 1 \cdot \sin n x d x+\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} 0 \cdot \sin n x d x=-\left.\frac{2}{\pi} \frac{\cos n x}{n}\right|_{0} ^{\frac{\pi}{2}} \\
&=- \frac{2}{\pi n}\left[\cos \frac{n \pi}{2}-1\right]
\end{aligned}
$$

$$
\alpha_{n}=\left\{\begin{array}{cc}
\frac{2}{\pi n} & n \text { odd } \\
\left(\frac{-2}{\pi n}\right)\left[(-1)^{\frac{n}{2}}-1\right] & n \text { even }
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
f(x) & =\sum_{1}^{\infty} \alpha_{n} \sin n x \\
& =\frac{2}{\pi}\left[\sin x+\frac{2}{2} \sin 2 x+\frac{1}{3} \sin 3 x+0 \cdot \sin 4 x+\frac{1}{5} \sin 5 x+\frac{2}{6} \sin 6 x+\cdots\right]
\end{aligned}
$$

Note that our function $f(x)$ on $0 \leq x \leq \pi$ is extended to the following on $-\infty<x<\infty$.

What we have done with sine functions can be done with cosine functions.

Fourier Cosine Series.

This comes from eigenvalue problem

$$
\begin{gathered}
\text { D.E. } y^{\prime \prime}+\lambda y=0 \quad \text { B.C. } \quad y^{\prime}(0)=y^{\prime}(L)=0 \\
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
\end{gathered}
$$

are the eigenvalues and

$$
\psi_{n}=\cos \frac{n \pi x}{L}
$$

are the eigenfunctions, $n=0,1,2, \ldots$.

Note $\lambda_{0}=0 \Rightarrow \psi_{0}=1$ which is an eigenfunction. Now we want to write

$$
f(x)=\beta_{0}+\sum_{1}^{\infty} \beta_{n} \cos \frac{n \pi x}{L}
$$

Proceeding as above in our derivation of the constants in the Fourier Sine series, we get for the constants in the Fourier Cosine series

$$
\beta_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x n=1,2,3, \ldots \quad \beta_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
$$

To see where the formula for β_{0} comes from note

$$
\begin{aligned}
& <\psi_{0}, f(x)>=\psi_{0}, \beta_{0} \psi_{0}>=<1,1>\beta_{0} \\
\Rightarrow & \beta_{0}=\frac{\int_{0}^{L} 1 \cdot f(x) d x}{\int_{0}^{L} 1^{2} d x}=\frac{1}{L} \int_{0}^{L} f(x) d x .
\end{aligned}
$$

Note the book writes

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

and

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x n-0,1,2, \ldots
$$

Thus

$$
\beta_{0}=\frac{a_{0}}{2}
$$

Again the Fourier series is periodic with period 2L. However, now $f(-x)=f(x)$ since cosine is an even function. Here the Fourier Cosine series extends $f(x)$ which is given on $[0, L]$ to a function $F(x)$ which is defined on $-\infty<x<\infty$ as

$$
F(x)=\left\{\begin{array}{lr}
f(x) \quad 0<x<L \\
f(-x)-L<x<0
\end{array} \quad F(x+2 L)=F(x)\right.
$$

If the graph of $f(x)$ looked as below

then $F(x)$, the even extension of $f(x)$, would look like

Example. Find the Fourier Cosine series for $f(x)=1, \quad 0<x<4$

$$
\begin{aligned}
& L=4 \\
& f(x)=\beta_{0}+\sum_{1}^{\infty} \beta_{n} \cos \frac{n \pi x}{4} \quad \beta_{0}=\frac{1}{4} \int_{0}^{4} f(x) d x=\frac{1}{4} \int_{0}^{4} 1 \cdot d x=1 \\
& \beta_{k}=\frac{2}{4} \int_{0}^{4} 1 \cdot \cos \frac{n \pi x}{4} d x=\frac{1}{2}\left[\frac{\sin \frac{n \pi x}{4}}{\frac{n \pi}{4}}\right]_{0}^{4}=\frac{2}{4 \pi n}[\sin 0]=0
\end{aligned}
$$

Therefore $f(x)=1$ is its own Fourier Cosine series. The function is simply extended.

Example Find the Fourier cosine series of

$$
f(x)= \begin{cases}1 & 0<x<\frac{\pi}{2} \\ 0 & \frac{\pi}{2}<x<\pi\end{cases}
$$

The graph of $f(x)$ is given below.

Note that this is the same function as in the previous example.
Now

$$
f(x)=b_{0}+\sum_{n=1}^{\infty} b_{n} \cos \left(\frac{n \pi x}{L}\right)=b_{0}+\sum_{1}^{\infty} b_{n} \cos n x
$$

since the function is given on $[0, L] \Rightarrow L=\pi$.

$$
\begin{aligned}
b_{0} & =\frac{1}{L} \int_{0}^{L} f(x) d x=\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} 1 d x=\frac{1}{2} \\
b_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} 1 \cdot \cos n x d x \\
& =\frac{2}{n \pi}[\sin n x]_{0}^{\frac{\pi}{2}}=\frac{2}{n \pi} \sin \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

If n is even, then $\sin \left(\frac{n \pi}{2}\right)=0$. When n is odd, say $n=2 k+1, k=0,1,2, \ldots$ then $\sin \left(\frac{n \pi}{2}\right)= \pm 1$, depending on whether k is even or odd. Thus

$$
b_{n}=\left\{\begin{array}{c}
0 n \text { even } \\
\frac{2}{n \pi}(-1)^{k} n \text { odd, } n=2 k+1, k=0,1,2, \ldots
\end{array}\right.
$$

Thus

$$
\begin{aligned}
f(x) & =b_{0}+\sum_{1}^{\infty} b_{n} \cos n x=b_{0}+b_{1} \cos x+b_{2} \cos 2 x+\cdots \\
& =\frac{1}{2}+\frac{2}{\pi} \cos x+0 \cos 2 x-\frac{2}{2 \pi} \cos 3 x+0 \cos 4 x+\frac{2}{5 \pi} \cos 5 x+\cdots
\end{aligned}
$$

The graph of the even extension of the given function is

Example (a) Find the first four nonzero terms of the Fourier cosine series for the function

$$
f(x)=x \text { on } 0<x<1
$$

Solution:

$$
f(x)=\beta_{0}+\sum_{1}^{\infty} \beta_{n} \cos \frac{n \pi x}{L}
$$

where

$$
\beta_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \text { and } \beta_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \quad n=1,2,3, \ldots
$$

Here $L=1$ so

$$
\begin{aligned}
& f(x)=\beta_{0}+\sum_{1}^{\infty} \beta_{n} \cos n \pi x \\
& \beta_{0}=\frac{1}{1} \int_{0}^{1} x d x=\frac{1}{2} \\
& \beta_{n}=\frac{2}{1} \int_{0}^{1} x \cos n \pi x d x=\left.\frac{2}{n^{2} \pi^{2}}(\cos n \pi x+n \pi x \sin n \pi x)\right|_{0} ^{1} \\
& =\frac{2}{n^{2} \pi^{2}}(\cos n \pi-1)=\frac{2}{n^{2} \pi^{2}}\left((-1)^{n}-1\right) n=1,2,3, \ldots
\end{aligned}
$$

Hence $\beta_{1}=-\frac{4}{\pi^{2}}, \quad \beta_{2}=0, \beta_{3}=-\frac{4}{9 \pi^{2}}, \quad \beta_{4}=0, \quad \beta_{5}=-\frac{4}{25 \pi^{2}}$
Therefore

$$
f(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \cos \pi x-\frac{4}{9 \pi^{2}} \cos 3 \pi x-\frac{4}{25 \pi^{2}} \cos 5 \pi x
$$

Note: The book gives the formulas

$$
f(x)=\frac{\beta_{0}}{2}+\sum_{1}^{\infty} \beta_{n} \cos \frac{n \pi x}{L}
$$

where

$$
\beta_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \quad n=0,1,2,3, \ldots
$$

Using this formula we get

$$
\beta_{0}=\frac{2}{1} \int_{0}^{1} x d x=1
$$

Therefore, the first term in the book's formula for the Fourier cosine series is $\frac{\beta_{0}}{2}=\frac{1}{2}$ as before.
(b) Sketch the graph of the function represented by the Fourier cosine series in (a) on $-3<x<3$.
x

Example (a) Find the Fourier sine series for the function

$$
f(x)=x \text { on } 0<x<1
$$

Solution:

$$
f(x)=\sum_{1}^{\infty} \alpha_{k} \sin \frac{k \pi x}{L}
$$

where

$$
\alpha_{k}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{k \pi x}{L} d x, \quad k=1,2,3, \ldots
$$

Here $L=1$ so

$$
f(x)=\sum_{1}^{\infty} \alpha_{k} \sin (k \pi x)
$$

where

$$
\alpha_{k}=2 \int_{0}^{1} f(x) \sin (k \pi x) d x, \quad k=1,2,3, \ldots
$$

Thus

$$
\begin{aligned}
\alpha_{k} & =2 \int_{0}^{1} x \sin (k \pi x) d x=2\left[\frac{1}{(k \pi)^{2}}(\sin k \pi x-k \pi x \cos k \pi x)\right]_{0}^{1}= \\
& =-2\left[\frac{1}{k \pi} \cos k \pi\right]=\frac{2}{k \pi}(-1)^{k+1} \quad k=1,2,3, \ldots
\end{aligned}
$$

Thus

$$
f(x)=\frac{2}{\pi} \sum_{1}^{\infty} \frac{(-1)^{k+1}}{k} \sin (k \pi x)
$$

(b) Sketch the graph of the function represented by the Fourier sine series in 5 (a) on $-3<x<3$. Solution:

Full Fourier Series (Omit)

This comes from the eigenvalue problem

$$
\text { D.E. } y^{\prime \prime}+\lambda y=0 \quad \text { B.C. } y(0)=y(2 L) \quad y^{\prime}(0)=y^{\prime}(2 L) \quad 0 \leq x \leq 2 L
$$

The eigenvalues are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

$n=0,1,2, \ldots$, , whereas the eigenfunctions are

$$
\psi_{n}=a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{2 \pi x}{L} \quad n=0,1,2, . .
$$

Note that for this problem the function $f(x)$ is given on [$0,2 L$] since the eigenvalue problem is given on this interval. This is a different interval than that for Fourier Sine and Fourier Cosine series.
\Rightarrow

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)
$$

where

$$
a_{0}=\frac{1}{2 L} \int_{0}^{2 L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \cos \frac{n \pi x}{L} d x \quad b_{n}=\frac{1}{L} \int_{0}^{2 L} f(x) \sin \frac{n \pi x}{L} d x
$$

Example Find full Fourier series for

$$
f(x)= \begin{cases}1 & 0<x<\frac{\pi}{2} \\ 0 & \frac{\pi}{2}<x<\pi\end{cases}
$$

$$
\begin{gathered}
2 L=\pi \Rightarrow L=\frac{\pi}{2} \\
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} 1 \cdot d x=\frac{1}{2} \\
a_{n}=\frac{1}{\frac{\pi}{2}} \int_{0}^{\pi} f(x) \cos \frac{n \pi x}{\frac{\pi}{2}} d x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} 1 \cdot \cos 2 n x d x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \cos 2 n x d x=\left.\frac{2}{\pi} \frac{\sin 2 n x}{2 n}\right|_{0} ^{\frac{\pi}{2}}=0 \\
b_{n}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin 2 n x d x=-\left.\frac{2}{\pi} \frac{\cos 2 n x}{2 n}\right|_{0} ^{\frac{\pi}{2}}=\frac{1}{\pi n}[\cos n \pi-\cos 0] \quad n=1,2, \ldots \\
b_{n}=-\frac{1}{\pi n}\left[(-1)^{n}-1\right]=\left\{\begin{array}{l}
+\frac{2}{\pi n} \quad n \text { odd } \\
0 \quad n \operatorname{even}
\end{array}\right. \\
f(x)=\frac{1}{2}+\frac{2}{\pi}\left[\sin 2 x+\frac{1}{3} \sin 6 x+\frac{1}{5} \sin 10 x+\ldots\right]
\end{gathered}
$$

The Vibrating String

It may be shown that the equation governing a string of length L vibrating is

$$
\begin{equation*}
y_{x x}(x, t)=\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{\alpha^{2}} y_{t t}(x, t) \tag{1}
\end{equation*}
$$

Equation (1) is called the wave equation. Suppose string is held fixed at the ends $x=0$ and $x=L$

\Rightarrow
(2a) $y(0, t)=0 \quad t \geq 0$
B. C.
(2b) $y(L, t)=0 \quad t \geq 0$
B.C.

Also suppose at $t=0$ the string has displacement $y=f(x)$ and is released from rest

```
#
```

$$
\begin{array}{lll}
\text { (3a) } y(x, 0)=f(x) & 0 \leq x \leq L & \text { I.C. } \\
\text { (3b) } y_{t}(x, 0)=0 & 0 \leq x \leq L & \text { I.C. }
\end{array}
$$

In order to solve the above problem we shall assume $y(x, t)=X(x) T(t)$ separation of variables $\Rightarrow y_{x}=X^{\prime} T \quad y_{x x}=X^{\prime \prime} T \quad y_{t t}=X T^{\prime \prime}$. Note that $X^{\prime}, T^{\prime}, \ldots$ are ordinary derivatives of X with respect to x and T with respect to t. Now the P.D.E. (1)

$$
\Rightarrow
$$

$$
X^{\prime \prime} T=\frac{1}{\alpha^{2}} X T^{\prime \prime}
$$

$$
\Rightarrow
$$

$$
\frac{X^{\prime \prime}}{X}=\frac{1}{\alpha^{2}} \frac{T^{\prime \prime}}{T}
$$

Note that the left hand side is a function of x only, whereas the right hand side is a function of t only. This implies that each side must equal the same constant. Therefore

$$
\frac{X^{\prime \prime}}{X}=\frac{1}{\alpha^{2}} \frac{T^{\prime \prime}}{T}=k
$$

Hence we get the two ordinary differential equations

$$
X^{\prime \prime}-k X=0 \quad \text { and } \quad T^{\prime \prime}-\alpha^{2} k T=0
$$

Now $y(0, t)=X(0) T(t)=0 \Rightarrow X(0)=0$, whereas $y(L, t)=X(L) T(t)=0 \Rightarrow X(L)=0$. Therefore we must solve the problem

$$
X^{\prime \prime}-k X=0 \quad X(0)=X(L)=0
$$

There are three cases. If $k=0 \Rightarrow X \equiv 0$. If $k>0 \Rightarrow X=c_{1} e^{\sqrt{k} x}+c_{2} e^{-\sqrt{k} x}$. and the boundary conditions $\Rightarrow c_{1}=c_{2}=0$.

For the case $k<0$, let $k=-\lambda^{2}$
\Rightarrow

$$
X^{\prime \prime}+\lambda^{2} X=0 \quad X(0)=X(L)=0
$$

This is an eigenvalue problem. The solution to the DE is

$$
X=c_{1} \sin \lambda x+c_{2} \cos \lambda x
$$

$X(0)=0 \Rightarrow c_{2}=0$ whereas $X(L)=0 \Rightarrow c_{1} \sin \lambda=0 \Rightarrow \lambda=\frac{n \pi}{L}$ for $n= \pm 1, \pm 2, \pm 3, \ldots$.
Since $\sin (-x)=-\sin x$ we may disregard the negative values of n.
Therefore

$$
X_{n}(x)=c_{n} \sin \frac{n \pi}{L} x \quad n=1,2,3, \ldots
$$

For $T(t)$ we have the equation

$$
T^{\prime \prime}+\alpha^{2} \lambda^{2} T=0
$$

since $k=-\lambda^{2}$. Thus

$$
T_{n}(t)=c \sin \alpha \lambda t+d \cos \alpha \lambda t=a_{n} \sin \frac{n \pi \alpha}{L} t+b_{n} \cos \frac{n \pi \alpha t}{L}
$$

But $y_{t}(x, 0)=0 \Rightarrow T^{\prime}(0)=0$. Now $T^{\prime}(t)=a_{n}\left(\alpha \frac{n \pi}{L}\right) \cos \alpha \frac{n \pi}{L} t-b_{n}\left(\alpha \frac{n \pi}{L}\right) \sin \alpha \frac{n \pi t}{L}$, so $T^{\prime}(0)=0$ $\Rightarrow a_{n}=0$ for all n.
Therefore

$$
T_{n}(t)=b_{n} \cos \frac{n \pi \alpha t}{L}
$$

and we have finally that

$$
y_{n}(x, t)=X_{n}(x) T_{n}(t)=c_{n} \sin \frac{n \pi x}{L} \times b_{n} \cos \frac{n \pi \alpha t}{L}
$$

Let $c_{n} \times b_{n}=d_{n}$.
We note that

$$
y_{n}(x, t)=d_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi \alpha t}{L} \quad n=1,2,3, \ldots
$$

satisfies the P.D.E. $y_{x x}=\frac{1}{\alpha^{2}} y_{t t}$ (1) and the boundary conditions $y(0, t)=y(L, t)=0(2 a, 2 b)$, as well as the initial condition $y_{t}(0)=0(3 b)$.

What about the condition $y(x, 0)=f(x)$? Notice that

$$
y(x, t)=\sum_{1}^{\infty} d_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi \alpha t}{L}
$$

is also a solution since of (1), $(2 a, b)$ and (3b). Thus $y(x, t)$ is solution of everything except condition (3a), namely, $y(x, 0)=f(x)$.
But

$$
y(x, 0)=\sum_{1}^{\infty} d_{n} \sin \frac{n \pi x}{L}=f(x)
$$

Therefore if f has a Fourier sine series expansion we let
\Rightarrow

$$
d_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Now with these coefficients d_{n}

$$
y(x, t)=\sum_{1}^{\infty} d_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi \alpha t}{L}
$$

is a solution to entire problem (1), $(2 a, 2 b),(3 a, 3 b)$.

Example

$$
\begin{aligned}
y_{x x} & =y_{t t} \quad y(0, t)=y(L, t)=0 \\
y_{t}(x, 0) & =0 \\
y(x, 0) & =2 \sin \frac{\pi x}{L}
\end{aligned}
$$

Here $\alpha=1$ and $f(x)=2 \sin \frac{\pi x}{L}$
Now

$$
\begin{gathered}
y(x, t)=\sum_{1}^{\infty} d_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi t}{L} \\
d_{n}=\frac{2}{L} \int_{0}^{L} \sin \frac{\pi x}{L} \sin \frac{n \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} 2 \sin \frac{\pi x}{L} \sin \frac{n \pi x}{L} d x=0 \quad n=2,3, \ldots \\
d_{1}=\frac{2}{L} \int_{0}^{L}(2) \sin ^{2} \frac{n \pi x}{L} d x=\frac{4}{L}\left[\int_{0}^{L}\left(\frac{1-\cos \frac{2 n \pi x}{L}}{2}\right)\right] d x=\frac{4}{L}\left[\frac{x}{2}-\left(\frac{\sin 2 \frac{n \pi x}{L}}{\frac{2 n \pi}{L}}\right)\right]_{0}^{L}=2
\end{gathered}
$$

\Rightarrow solution is

$$
y(x, t)=2 \sin \frac{n \pi}{L} \cos \frac{\pi t}{L}
$$

Example Solve:

$$
\begin{aligned}
& \text { P.D.E.: } u_{x x}-16 u_{t t}=0 \\
& \text { B.C.'s: } u(0, t)=0 \quad u_{x}(1, t)=0 \\
& \text { I.C.: } u(x, 0)=-3 \sin \frac{5 \pi x}{2}+23 \sin \frac{11 \pi x}{2} ; \quad u_{t}(x, 0)=0
\end{aligned}
$$

Solution: We assume

$$
u(x, t)=X(x) T(t)
$$

The PDE implies

$$
\frac{X^{\prime \prime}}{X}=16 \frac{T^{\prime \prime}}{T}=k k \text { a constant }
$$

Then we have the two ordinary DEs

$$
\begin{aligned}
X^{\prime \prime}-k X & =0 \\
T^{\prime \prime}-\frac{1}{16} k T & =0
\end{aligned}
$$

The boundary conditions for $X(x)$ are

$$
X(0)=X^{\prime}(1)=0
$$

so that the eigenvalue problem for X is

$$
X^{\prime \prime}-k X=0 \quad X(0)=X^{\prime}(1)=0
$$

For nontrivial solutions we let $k=-\beta^{2}, \beta \neq 0$ and get

$$
X^{\prime \prime}+\beta^{2} X=0
$$

SO

$$
\begin{gathered}
X(x)=C_{1} \sin \beta x+C_{2} \cos \beta x \\
X(0)=0 \Rightarrow C_{2}=0
\end{gathered}
$$

Thus

$$
X^{\prime}(x)=C_{1} \beta \cos \beta x
$$

and $X^{\prime}(1)=0 \Rightarrow$

$$
\beta=\left(\frac{2 n+1}{2}\right) \pi \quad n=0,1,2, \ldots
$$

Therefore

$$
X_{n}(x)=a_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \quad n=0,1,2, \ldots
$$

Since

$$
k=-\beta^{2}=\left(\frac{2 n+1}{2}\right)^{2} \pi^{2}
$$

The equation for $T(t)$ becomes

$$
T^{\prime \prime}+\frac{1}{16}\left(\frac{2 n+1}{2}\right)^{2} \pi^{2} T=0
$$

So

$$
T_{n}(t)=b_{n} \sin \left(\frac{2 n+1}{8}\right) \pi t+c_{n} \cos \left(\frac{2 n+1}{8}\right) \pi t \quad n=0,1,2, \ldots
$$

The BC $u_{t}(x, 0)=0 \Rightarrow T^{\prime}(0)=0$. Since

$$
T_{n}^{\prime}(t)=b_{n}\left(\frac{2 n+1}{8}\right) \pi \cos \left(\frac{2 n+1}{8}\right) \pi t-c_{n}\left(\frac{2 n+1}{8}\right) \pi \sin \left(\frac{2 n+1}{8}\right) \pi t
$$

we see that $b_{n}=0$ so that

$$
T_{n}(t)=c_{n} \cos \left(\frac{2 n+1}{8}\right) \pi t \quad n=0,1,2, \ldots
$$

Thus

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=D_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \cos \left(\frac{2 n+1}{8}\right) \pi t \quad n=0,1,2, \ldots
$$

Let

$$
u(x, t)=\sum_{n=0}^{\infty} u_{n}(x, t)=\sum_{n=0}^{\infty} D_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \cos \left(\frac{2 n+1}{8}\right) \pi t
$$

Then

$$
u(x, 0)=\sum_{n=0}^{\infty} D_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x=-3 \sin \frac{5 \pi x}{2}+23 \sin \frac{11 \pi x}{2}
$$

Therefore

$$
D_{2}=-3 \quad D_{5}=23 \quad D_{n}=0 \quad n \neq 2,5
$$

The final solution is then

$$
u(x, t)=-3 \sin \left(\frac{5 \pi x}{2}\right) \cos \left(\frac{5 \pi t}{8}\right)+23 \sin \left(\frac{11 \pi x}{2}\right) \cos \frac{11 \pi t}{8}
$$

$u(x, 0)=-3 \sin \frac{5}{2} \pi x+23 \sin \frac{11}{2} \pi x$

$u(x, .1)=-3 \sin \frac{5}{2} \pi x \cos 0.0625 \pi+23 \sin \frac{11}{2} \pi x \cos 0.1375 \pi$
$u(x, .4)=-3 \sin \frac{5}{2} \pi x \cos 0.25 \pi+23 \sin \frac{11}{2} \pi x \cos 0.55 \pi$
$u(x, 6)=-3 \sin \frac{5}{2} \pi x \cos 0.375 \pi+23 \sin \frac{11}{2} \pi x \cos 0.825 \pi$
$u(x, .8)=23 \sin \frac{11}{2} \pi x \cos 1.1 \pi$

Example Solve

$$
\text { PDE } \begin{aligned}
u_{x x}-16 u_{t t} & =0 \\
\text { BCs } u(0, t) & =0 \quad u_{x}(1, t)=0 \\
\text { IC } \quad u(x, 0) & =-6 \sin \left(\frac{3 \pi x}{2}\right)+13 \sin \left(\frac{11 \pi x}{2}\right) \\
\text { IC } u_{t}(x, 0) & =0
\end{aligned}
$$

You must derive the solution. Your solution should not have any arbitrary constants in it. Show all steps. Solution: Let $u(x, t)=X(x) T(t)$. Then the PDE implies

$$
X^{\prime \prime} T=16 X T^{\prime \prime}
$$

or

$$
\frac{X^{\prime \prime}}{X}=16 \frac{T^{\prime \prime}}{T}=-\lambda^{2}
$$

since we will need sines and cosines in the X part of the solution.

Thus

$$
\begin{aligned}
X^{\prime \prime}+\lambda^{2} X & =0 \\
T^{\prime \prime}+\frac{\lambda^{2}}{16} T & =0
\end{aligned}
$$

The BCs are

$$
\begin{gathered}
X(0)=X^{\prime}(1)=0 \\
X(x)=a_{n} \sin \lambda x+b_{n} \cos \lambda x
\end{gathered}
$$

$X(0)=0$ implies that $b_{n}=0$, so

$$
\begin{gathered}
X(x)=a_{n} \sin \lambda x \\
X^{\prime}(x)=a_{n} \lambda \cos \lambda x
\end{gathered}
$$

so

$$
X^{\prime}(1)=a_{n} \lambda \cos \lambda=0
$$

Hence $\lambda=\frac{2 n+1}{2} \pi, \quad n=0,1,2, \ldots$ and

$$
X_{n}(x)=A_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \quad n=0,1,2, \ldots
$$

Also

$$
\begin{gathered}
T^{\prime \prime}+\frac{\lambda^{2}}{16} T=T^{\prime \prime}+\frac{(2 n+1)^{2} \pi^{2}}{64} T=0 \\
T_{n}(t)=c_{n} \sin \left(\frac{2 n+1}{8}\right) \pi t+d_{n} \cos \left(\frac{2 n+1}{8}\right) \pi t
\end{gathered}
$$

$u_{t}(x, 0)=0$ implies that $c_{n}=0$ and

$$
T_{n}(t)=d_{n} \cos \left(\frac{2 n+1}{8}\right) \pi t
$$

Thus

$$
u_{n}(x . t)=B_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \cos \left(\frac{2 n+1}{8}\right) \pi t \quad n=0,1,2, \ldots
$$

Let

$$
\begin{gathered}
u(x, t)=\sum_{n=0}^{\infty} u_{n}(x . t)=\sum_{n=0}^{\infty} B_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \cos \left(\frac{2 n+1}{8}\right) \pi t \\
u(x, 0)=\sum_{n=0}^{\infty} B_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x=-6 \sin \left(\frac{3 \pi x}{2}\right)+13 \sin \left(\frac{11 \pi x}{2}\right)
\end{gathered}
$$

Therefore $B_{1}=-6, B_{5}=13$ and $B_{n}=0$ for $n \neq 1,5$ so

$$
u(x, t)=-6 \sin \left(\frac{3 \pi x}{2}\right) \cos \left(\frac{3 \pi}{8}\right) t+13 \sin \left(\frac{11 \pi x}{2}\right) \cos \left(\frac{11 \pi}{8}\right) t
$$

Example Solve:

$$
\begin{aligned}
& \text { P.D.E.: } u_{x x}-16 u_{t t}=0 \\
& \text { B.C.'s: } u(0, t)=0 \quad u_{x}(1, t)=0 \\
& \text { I.C.: } u(x, 0)=-3 \sin \frac{5 \pi x}{2}+23 \sin \frac{11 \pi x}{2} ; \quad u_{t}(x, 0)=2 \pi \sin \frac{3 \pi x}{2}
\end{aligned}
$$

Solution: We assume

$$
u(x, t)=X(x) T(t)
$$

The PDE implies

$$
\frac{X^{\prime \prime}}{X}=16 \frac{T^{\prime \prime}}{T}=k k \text { a constant }
$$

Then we have the two ordinary DEs

$$
\begin{aligned}
X^{\prime \prime}-k X & =0 \\
T^{\prime \prime}-\frac{1}{16} k T & =0
\end{aligned}
$$

The boundary conditions for $X(x)$ are

$$
X(0)=X^{\prime}(1)=0
$$

so that the eigenvalue problem for X is

$$
X^{\prime \prime}-k X=0 \quad X(0)=X^{\prime}(1)=0
$$

For nontrivial solutions we let $k=-\beta^{2}, \beta \neq 0$ and get

$$
X^{\prime \prime}+\beta^{2} X=0
$$

so

$$
\begin{gathered}
X(x)=C_{1} \sin \beta x+C_{2} \cos \beta x \\
X(0)=0 \Rightarrow C_{2}=0
\end{gathered}
$$

Thus

$$
X^{\prime}(x)=C_{1} \beta \cos \beta x
$$

and $X^{\prime}(1)=0 \Rightarrow$

$$
\beta=\left(\frac{2 n+1}{2}\right) \pi \quad n=0,1,2, \ldots
$$

Therefore

$$
X_{n}(x)=a_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \quad n=0,1,2, \ldots
$$

Since

$$
k=-\beta^{2}=\left(\frac{2 n+1}{2}\right)^{2} \pi^{2}
$$

The equation for $T(t)$ becomes

$$
T^{\prime \prime}+\frac{1}{16}\left(\frac{2 n+1}{2}\right)^{2} \pi^{2} T=0
$$

so

$$
T_{n}(t)=b_{n} \sin \left(\frac{2 n+1}{8}\right) \pi t+c_{n} \cos \left(\frac{2 n+1}{8}\right) \pi t \quad n=0,1,2, \ldots
$$

Thus

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=D_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \sin \left(\frac{2 n+1}{8}\right) \pi t+E_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \cos \left(\frac{2 n+1}{8}\right) \pi t \quad n=0,1,2, \ldots
$$

Let

$$
\begin{aligned}
& u(x, t)=\sum_{n=0}^{\infty} u_{n}(x, t)=\sum_{n=0}^{\infty}\left[D_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \sin \left(\frac{2 n+1}{8}\right) \pi t+E_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \cos \left(\frac{2 n+1}{8}\right) \pi t\right] \\
& \\
& \quad u_{t}(x, t) \\
& =\sum_{n=0}^{\infty}\left[D_{n}\left(\frac{2 n+1}{8}\right) \pi \sin \left(\frac{2 n+1}{2}\right) \pi x \cos \left(\frac{2 n+1}{8}\right) \pi t-E_{n}\left(\frac{2 n+1}{8}\right) \pi \sin \left(\frac{2 n+1}{2}\right) \pi x \sin \left(\frac{2 n+1}{8}\right) \pi t\right]
\end{aligned}
$$

Then

$$
u(x, 0)=\sum_{n=0}^{\infty} E_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x=-3 \sin \frac{5 \pi x}{2}+23 \sin \frac{11 \pi x}{2}
$$

Therefore

$$
\begin{gathered}
E_{2}=-3 \quad E_{5}=23 \quad E_{n}=0 \quad n \neq 2,5 \\
u_{t}(x .0)=\sum_{n=0}^{\infty} D_{n}\left(\frac{2 n+1}{8}\right) \pi \sin \left(\frac{2 n+1}{2}\right) \pi x=2 \pi \sin \frac{3 \pi x}{2}
\end{gathered}
$$

Thus $D_{1}\left(\frac{3}{8}\right) \pi=2 \pi$ so $D_{1}=\frac{16}{3}$ and $D_{n}=0 \quad n \neq 1$
The final solution is then

$$
u(x, t)=\frac{16}{3} \sin \left(\frac{3 \pi x}{2}\right) \cos \frac{3 \pi t}{8}-3 \sin \left(\frac{5 \pi x}{2}\right) \cos \left(\frac{5 \pi t}{8}\right)+23 \sin \left(\frac{11 \pi x}{2}\right) \cos \frac{11 \pi t}{8}
$$

The Heat Equation

Consider a cylinder parallel to x-axis

Let u denote the temperature in the cylinder. Suppose the ends $x=0$ and $x=L$ are kept at zero temperature whereas at $t=0$ the initial temperature distribution is $u=f(x)$. It may be shown that $u=u(x, t)$ satisfies the P.D.E.

$$
\begin{equation*}
u_{x x}=\frac{1}{k} u_{t} \quad 0<x<L, \quad t>0 \tag{1}
\end{equation*}
$$

where k is a constant and $k>0$

Equation (1) is called the heat equation. The physical conditions of the problem imply

$$
\begin{align*}
& \text { B. C. } u(0, t)=0=u(L, t) \quad t \geq 0 \tag{2}\\
& \text { I.C. } u(x, 0)=f(x) \quad 0 \leq x \leq L \tag{3}
\end{align*}
$$

We want to determine $u(x, t)$, i.e. the temperature in the cylinder at any point x at any time t. Again we use separation of variables. The assumption $u(x, t)=X(x) T(t)$ leads to

$$
\begin{array}{ll}
& \frac{X^{\prime \prime}(x)}{X(x)}=\frac{1}{k} \frac{T^{\prime}(t)}{T(t)}=-\lambda^{2} \\
\Rightarrow X^{\prime \prime}+\lambda^{2} X=0 & X(0)=X(L)=0 \text { and } T^{\prime}+k \lambda^{2} T=0 . \\
\Rightarrow X_{n}=c_{n} \sin \frac{n \pi x}{L} \quad n=1,2, \ldots \quad \lambda_{n}=\frac{n \pi}{L} \Rightarrow \\
\Rightarrow & T(t)=d_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} k t} \\
\Rightarrow & T_{n}+k \frac{n^{2} \pi^{2}}{L^{2}} T=0 \\
\Rightarrow & \\
& \\
& \\
& \\
& \\
& \\
&
\end{array}
$$

satisfies (1) and (2) \Rightarrow

$$
u_{n}(x, t)=\sum_{1}^{\infty} a_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} k t} \sin \frac{n \pi x}{L}
$$

also satisfies (1) and (2).

We need to satisfy (3) namely, $u(x, 0)=f(x)$ However,

$$
u(x, 0)=\sum_{1}^{\infty} a_{n} \sin \frac{n \pi x}{L}
$$

Thus we take a_{n} to be the Fourier sine coefficients of $f(x)$. Hence

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Remark. The factor $e^{-\left(\frac{n \pi}{L}\right)^{2} k t} \rightarrow 0$ as $t \rightarrow \infty \Rightarrow \lim _{t \rightarrow \infty} u(x, t)=0$ as expected from the physical problem.
Example Solve the problem:

$$
\begin{aligned}
& \text { P.D.E.: } \quad u_{x x}-8 u_{t}=0 \\
& \text { B.C.: } u(0, t)=0 \quad u_{x}(1, t)=0 \\
& \text { I.C. }: u(x, 0)=-2 \sin \frac{3 \pi}{2} x+10 \sin \frac{9 \pi}{2} x
\end{aligned}
$$

Solution: Let $u(x, t)=X(x) T(t)$. Then the PDE implies

$$
\frac{X^{\prime \prime}}{X}=8 \frac{T^{\prime}}{T}=k k \text { a constant }
$$

Then we have the two ODEs

$$
\begin{aligned}
X^{\prime \prime}-k X & =0 \\
T^{\prime}-\frac{1}{8} k T & =0
\end{aligned}
$$

The BCs for $X(x)$ are

$$
X(0)=X^{\prime}(1)=0
$$

The boundary conditions for $X(x)$ are

$$
X(0)=X^{\prime}(1)=0
$$

so that the eigenvalue problem for X is

$$
X^{\prime \prime}-k X=0 \quad X(0)=X^{\prime}(1)=0
$$

For nontrivial solutions we let $k=-\beta^{2}, \beta \neq 0$ and get

$$
X^{\prime \prime}+\beta^{2} X=0
$$

so

$$
\begin{gathered}
X(x)=C_{1} \sin \beta x+C_{2} \cos \beta x \\
X(0)=0 \Rightarrow C_{2}=0
\end{gathered}
$$

Thus

$$
X^{\prime}(x)=C_{1} \beta \cos \beta x
$$

and $X^{\prime}(1)=0 \Rightarrow$

$$
\beta=\left(\frac{2 n+1}{2}\right) \pi \quad n=0,1,2, \ldots
$$

Therefore

$$
X_{n}(x)=a_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x \quad n=0,1,2, \ldots
$$

The equation for $T(t)$ with $k=-\beta^{2}=\left(\frac{2 n+1}{2}\right)^{2} \pi^{2}$ is

$$
T^{\prime}+\frac{1}{8}\left(\frac{2 n+1}{2}\right)^{2} \pi^{2} T=0
$$

Thus

$$
T_{n}(t)=b_{n} e^{-\frac{1}{8}\left(\frac{2 n+1}{2}\right)^{2} \pi^{2} t} \quad n=0,1,2, \ldots
$$

Therefore we have

$$
u_{n}(x, t)=D_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x e^{-\frac{1}{8}\left(\frac{2 n+1}{2}\right)^{2} \pi^{2} t} \quad n=0,1,2, \ldots
$$

To satisfy the initial condition we let

$$
u(x, t)=\sum_{n=0}^{\infty} D_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x e^{-\frac{1}{8}\left(\frac{2 n+1}{2}\right)^{2} \pi^{2} t}
$$

Now

$$
u(x, 0)=\sum_{n=0}^{\infty} D_{n} \sin \left(\frac{2 n+1}{2}\right) \pi x=-2 \sin \frac{3 \pi}{2} x+10 \sin \frac{9 \pi}{2} x
$$

This means

$$
D_{1}=-2 \quad D_{4}=10 \text { and } D_{n}=0, \quad n \neq 1,2
$$

The solution to the problem is then

$$
u(x, t)=-2 \sin \left(\frac{3}{2}\right) \pi x e^{-\frac{1}{8}\left(\frac{3}{2}\right)^{2} \pi^{2} t}+10 \sin \left(\frac{9}{2}\right) \pi x e^{-\frac{1}{8}\left(\frac{9}{2}\right)^{2} \pi^{2} t}
$$

Additional Examples

Example Wave Equation Example

Problem 1 Section 10.6

Find a formal solution to the vibrating string problem governed by the given initial-boundary value problem.

$$
\begin{aligned}
u_{t t} & =u_{x x}, \quad 0<x<1, \quad t>0 \\
u(0, t) & =u(1, t)=0, \quad t>0 \\
u(x, 0) & =x(1-x), \quad 0<x<1 \\
u_{t}(x, 0) & =\sin 7 \pi x, \quad 0<x<1
\end{aligned}
$$

Let $u(x, t)=X(x) T(t)$. Then the PDE leads to

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{T}=-\lambda^{2}
$$

We then have two ODEs

$$
\begin{aligned}
X^{\prime \prime}+\lambda^{2} X & =0 \\
T^{\prime \prime}+\lambda^{2} T & =0
\end{aligned}
$$

Therefore

$$
X(x)=a \cos \lambda x+b \sin \lambda x
$$

The BCs for $X(x)$ are $X(0)=X(1)=0$. Thus, $a=0$ and $\lambda=n \pi, n=1,2, \ldots$ and

$$
X_{n}(x)=c_{n} \sin n \pi x \quad n=1,2, \ldots
$$

Also

$$
T_{n}(t)=d_{n} \cos n \pi t+e_{n} \sin n \pi t \quad n=1,2, \ldots
$$

so

$$
u_{n}(x, t)=\left[a_{n} \cos n \pi t+b_{n} \sin n \pi t\right] \sin n \pi x \quad n=1,2, \ldots
$$

Thus we let

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty}\left[a_{n} \cos n \pi t+b_{n} \sin n \pi t\right] \sin n \pi x
$$

We want

$$
u(x, 0)=x(1-x)=\sum_{n=1}^{\infty} a_{n} \sin n \pi x
$$

Therefore the constants a_{n} are given by the formula for the Fourier sine series coefficients with $L=1$ so

$$
\begin{aligned}
a_{n} & =\frac{2}{1} \int_{0}^{1} x(1-x) \sin n \pi x d x \\
& =2\left(\int_{0}^{1} x \sin n \pi x d x+\int_{0}^{1} x^{2} \sin n \pi x d x\right)
\end{aligned}
$$

Integration by parts yields

$$
\int_{0}^{1} x \sin n \pi x d x=-\frac{1}{n \pi} \cos n \pi=-\frac{(-1)^{n}}{n \pi}
$$

and

$$
\begin{aligned}
\int_{0}^{1} x^{2} \sin n \pi x d x & =-\frac{1}{n \pi} \cos n \pi-\frac{2}{n^{2} \pi^{2}}\left(-\frac{1}{n \pi} \cos n \pi+\frac{1}{n \pi}\right) \\
& =-\frac{(-1)^{n}}{n \pi}+\frac{2\left[(-1)^{n}-1\right]}{n^{3} \pi^{3}}
\end{aligned}
$$

Therefore for $n=1,2, \ldots$

$$
a_{n}=2\left\{-\frac{(-1)^{n}}{n \pi}+\frac{(-1)^{n}}{n \pi}-\frac{2\left[(-1)^{n}-1\right]}{n^{3} \pi^{3}}\right\}=-\frac{4\left[(-1)^{n}-1\right]}{n^{3} \pi^{3}}
$$

Note that

$$
a_{n}=\left\{\begin{array}{c}
0 \text { if } n \text { is even } \\
\frac{8}{n^{3} \pi^{3}} \text { if } n \text { is odd }
\end{array}\right.
$$

Since

$$
u_{t}(x, t)=\sum_{n=1}^{\infty}\left[-a_{n}(n \pi) \sin n \pi t+b_{n}(n \pi) \cos n \pi t\right] \sin n \pi x
$$

then

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty} b_{n}(n \pi) \sin n \pi x=\sin 7 \pi x
$$

Hence $7 \pi b_{7}=1$ so $b_{7}=\frac{1}{7 \pi}$ and $b_{n}=0$ for $n \neq 7$.

Substituting these constants into the expression

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty}\left[a_{n} \cos n \pi t+b_{n} \sin n \pi t\right] \sin n \pi x
$$

above and letting $n=2 k+1, k=0,1,2, \ldots$ since n is odd yields

$$
u(x, t)=\frac{1}{7 \pi} \sin 7 \pi t \sin 7 \pi x+\sum_{k=0}^{\infty} \frac{8}{[(2 k+1) \pi]^{3}} \cos (2 k+1) \pi t \sin (2 k+1) \pi x
$$

Example Use separation of variables, $u(x, t)=X(x) T(t)$, to find two ordinary differential equations which $X(x)$ and $T(t)$ must satisfy to be a solution of

$$
-3 x^{2} t^{4} \frac{\partial^{2} u}{\partial x^{2}}+(x-2)^{4}(t+6)^{3} \frac{\partial^{2} u}{\partial t^{2}}=0
$$

Note: Do not solve these ordinary differential equations.
Solution: $u_{x}(x, t)=X^{\prime}(x) T(t), u_{x x}=X^{\prime \prime} T$

$$
\begin{gathered}
\Rightarrow \quad-3 x^{2} t^{4} X^{\prime \prime}(x) T(t)+(x-2)^{4}(t+6)^{3} X(x) T^{\prime \prime}(t)=0 \\
\Rightarrow \quad \frac{-3 x^{2} X^{\prime \prime}}{(x-2)^{4} X}=-\frac{(t+6)^{3} T^{\prime \prime}}{t^{4} T}=k \\
\\
\Rightarrow 3 x^{2} X^{\prime \prime}+k(x-2)^{4} X=0 \text { and }(t+6)^{3} T^{\prime \prime}+k t^{4} T=0 .
\end{gathered}
$$

Example Solve

$$
\begin{array}{rlrl}
\text { PDE } & u_{x x} & =4 u_{t t} \\
\text { BCS } & u_{x}(0, t) & =0 & u_{x}(\pi, t)=0 \\
\text { ICs } & u(x, 0) & =0 & \\
u_{t}(x, 0)=-9 \cos (4 x)+16 \cos (8 x)
\end{array}
$$

You must derive the solution. Your solution should not have any arbitrary constants in it.
Solution:
Let $u(x, t)=X(x) T(t)$. Then differentiating and substituting in the PDE yields

$$
\begin{aligned}
X^{\prime \prime} T & =4 X T^{\prime \prime} \\
\Rightarrow & \\
\frac{X^{\prime \prime}}{X} & =4 \frac{T^{\prime \prime}}{T}
\end{aligned}
$$

Using the argument that the left hand side is purely a function of x and the right hand side is purely a function of t, and the only way that they can be equal is if they are equal to a constant, we get

$$
\frac{X^{\prime \prime}}{X}=4 \frac{T^{\prime \prime}}{T}=k \quad k \text { a constant }
$$

This yields the two ordinary differential equations

$$
X^{\prime \prime}-k X=0 \quad \text { and } \quad T^{\prime \prime}-\frac{1}{4} k T=0
$$

The boundary condition $u_{x}(0, t)=0$ implies, since $u_{x}(x, t)=X^{\prime}(x) T(t)$ that $X^{\prime}(0) T(t)=0$. We cannot have $T(t)=0$, since this would imply that $u(x, t)=0$. Thus $X^{\prime}(0)=0$. Similarly, the boundary condition $u_{x}(\pi, t)=0$ leads to $X^{\prime}(\pi)=0$.

We now have the following boundary value problem for $X(x)$:

$$
X^{\prime \prime}-k X=0 \quad X^{\prime}(0)=X^{\prime}(\pi)=0
$$

For $k>0$, the only solution is $X=0$. For $k=0$ we have $X=A x+B . X^{\prime}(x)=A$, so the BCs imply that $X^{\prime}(0)=X^{\prime}(\pi)=A=0$.

$$
X(x)=B, \quad B \neq 0
$$

is a nontrivial solution corresponding to the eigenvalue $k=0$. For $k<0$, let $-k=\alpha^{2}$, where $\alpha \neq 0$. Then we have the equation

$$
X^{\prime \prime}+\alpha^{2} X=0
$$

and

$$
\begin{gathered}
X(x)=c_{1} \sin \alpha x+c_{2} \cos \alpha x \\
X^{\prime}(x)=c_{1} \alpha \cos \alpha x-c_{2} \alpha \sin \alpha x \\
X^{\prime}(0)=c_{1} \alpha=0
\end{gathered}
$$

so $c_{1}=0$.

$$
X^{\prime}(\pi)=-c_{2} \alpha \sin \alpha \pi=0
$$

Therefore $\alpha=n, n=1,2, \ldots$ and the solution is

$$
k=-n^{2} \quad X_{n}(x)=a_{n} \cos n x \quad n=1,2,3, \ldots
$$

The case $k=0$ implies that the equation for T becomes $T^{\prime \prime}=0$, so $T=A t+B$. The initial condition $u(x, 0)=0$ implies $X(x) T(0)=0$ so that $T(0)=0$. Thus $B=0$ and $T=A t$ for $k=0$.
Substituting the values of $k=-n^{2}$ into the equation for $T(t)$ leads to

$$
T^{\prime \prime}+\frac{n^{2}}{4} T=0
$$

which has the solution

$$
T_{n}(t)=B_{n} \sin \frac{n t}{2}+C_{n} \cos \frac{n t}{2}, \quad n=1,2,3, \ldots
$$

The initial condition $u(x, 0)=0$ implies $X(x) T(0)=0$ so that $T(0)=0$. Thus $c_{n}=0$. For $n=0$ the equation for T becomes $T^{\prime \prime}=0$, and has the solution $T(t)=B_{0} t+C_{0}$. The condition $T(0)=0$ implies that $C_{0}=0$, so $T_{0}(t)=B_{0} t$
We now have the solutions

$$
\begin{aligned}
& u_{n}(x, t)=X_{n}(x) T_{n}(t)=A_{n} \cos n x \sin \frac{n t}{2} \quad n=1,2,3, \ldots \\
& u_{0}(x, t)=A_{0} t
\end{aligned}
$$

Since the boundary conditions and the equation are linear and homogeneous, it follows that

$$
u(x, t)=\sum_{n=0}^{\infty} u_{n}(x, t)=A_{0} t+\sum_{n=1}^{\infty} A_{n} \cos n x \sin \frac{n t}{2}
$$

satisfies the PDE, the boundary conditions, and the first initial condition. Since

$$
u_{t}(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n}\left(\frac{n}{2}\right) \cos n x \cos \frac{n t}{2}
$$

the last initial condition leads to

$$
u_{t}(x, 0)=-9 \cos (4 x)+16 \cos (8 x)=A_{0}+\sum_{n=1}^{\infty} A_{n}\left(\frac{n}{2}\right) \cos n x
$$

Matching the cosine terms on both sides of this equation leads to
$A_{4}\left(\frac{4}{2}\right)=-9$ so that $A_{4}=-\frac{9}{2}$ and $A_{8}\left(\frac{8}{2}\right)=16$ so that $A_{8}=4$. All of the other constants must be zero, since there are no cosine terms or constant terms on the left to match with. Thus

$$
u(x, t)=-\frac{9}{2} \cos 4 x \sin 2 t+4 \cos 8 x \sin 4 t
$$

Example Consider the non-homogeneous problem

$$
\begin{aligned}
\text { P.D.E. } & u_{x x}=9 u_{t} \\
\text { B.C.'s }: & u_{x}(0, t)=0 \quad u(1, t)=2 \\
\text { I.C. }: & u(x, 0)=-3 \cos \frac{7 \pi}{2} x+2
\end{aligned}
$$

i)

Let

$$
v(x, t)=u(x, t)-2
$$

and show that $v(x, t)$ satisfies the homogeneous problem

$$
\begin{aligned}
\text { P.D.E. }: & v_{x x}=9 v_{t} \\
\text { B.C. }: & v_{x}(0, t)=0 \quad v(1, t)=0 \\
\text { I.C. }: & v(x, 0)=-3 \cos \frac{7 \pi}{2} x
\end{aligned}
$$

Solution to i)

$$
\begin{gathered}
u_{x x}(x, t)=v_{x x}(x, t) \quad u_{x}(x, t)=v_{x}(x, t) \\
u_{t t}(x, t)=v_{t t}(x, t) \quad u_{t}(x, t)=v_{t}(x, t) \\
u(1, t)=2 \text { and } u(x, t)-2=v(x, t) \Rightarrow v(1, t)=0 \\
u_{x}(0, t)=0 \Rightarrow v_{x}(0, t)=0 \\
u(x, 0)=-3 \cos \frac{7 \pi}{2}+2 \text { and } u(x, t)-2=v(x, t) \Rightarrow v(x, 0)=-3 \cos \frac{7 \pi}{2}
\end{gathered}
$$

ii)

Solve the above problem for $v(x, t)$.
Solution to ii) Let $v(x, t)=X(x) T(t)$
then

$$
X^{\prime \prime} T=9 X T^{\prime} \Rightarrow \frac{X^{\prime \prime}}{X}=9 \frac{T^{\prime}}{T}=k
$$

resulting in the ordinary differential equations:

$$
X^{\prime \prime}-k X=0 \text { and } T^{\prime}-\frac{k}{9} T=0
$$

Boundary Conditions become:

$$
\begin{aligned}
X^{\prime}(0) T(t) & =0 \text { and } X(1) T(t)=0 \\
& \Rightarrow X^{\prime}(0)=0 \text { and } X(1)=1
\end{aligned}
$$

Solving the differential equation $X^{\prime \prime}-k X=0$ consider all values of k $k<0$ let $k=-u^{2} ; \quad u>0$

$$
X^{\prime \prime}+u^{2} X=0
$$

has the solution:

$$
X(x)=c_{1} \cos u x+c_{2} \sin u x
$$

and

$$
X^{\prime}(x)=-c_{1} u \sin u x+c_{2} u \cos u x
$$

B.C. $\Rightarrow X(1)=c_{1} \cos u+c_{2} \sin u=0$ and $X^{\prime}(0)=c_{2} u=0$
$\Rightarrow c_{2}=0$ thus $c_{1} \cos u=0$

$$
\begin{gathered}
\Rightarrow u_{n}=\frac{(2 n-1) \pi}{2} \quad n=1,2, \ldots \\
\Rightarrow k_{n}=-\frac{(2 n-1)^{2} \pi^{2}}{4} \quad n=1,2, \ldots
\end{gathered}
$$

So

$$
X_{n}(x)=c_{n} \cos \frac{(2 n-1) \pi}{2} x \quad n=1,2, \ldots
$$

The other cases for k, namely $k=0$ and $k>0$ yield only the trivial solution since $k=0 \Rightarrow X^{\prime \prime}=0 \quad$ which has the solution: $X(x)=c_{1} X+c_{2}$ and $X^{\prime}(x)=c_{1}$
B.C. $\Rightarrow X(1)=c_{1}+c_{2}=0$ and $X^{\prime}(0)=c_{1}=0 \Rightarrow c_{2}=0$
thus $X(x) \equiv 0$ is the trivial solution.
$k>0$ let $k=u^{2} ; \quad u>0$
$X^{\prime \prime}-u^{2} X=0$ has the solution: $X(x)=c_{1} e^{u x}+c_{2} e^{-u x}$
and $X^{\prime}(x)=c_{1} u e^{u x}-c_{2} u e^{-u x}$
B.C. $\Rightarrow X^{\prime}(0)=c_{1} u-c_{2} u=0 \Rightarrow c_{1}=c_{2}$
and $X(1)=c_{1} e^{u}+c_{2} e^{-u}=0 \Rightarrow c_{1} e^{u}+c_{1} e^{-u}=0 \Rightarrow c_{1}\left(e^{u}+e^{-u}\right)=0$
$\Rightarrow c_{1}=c_{2}=0$ thus $X(x) \equiv 0$ is the trivial solution.
Using the non-trivial solution

$$
k_{n}=-\frac{(2 n-1)^{2} \pi^{2}}{4} \quad X_{n}(x)=c_{n} \cos \frac{(2 n-1) \pi}{2} x, n=1,2, \ldots
$$

the equation

$$
T^{\prime}-\frac{k}{9} T=0
$$

becomes

$$
T^{\prime}+\frac{(2 n-1)^{2} \pi^{2}}{36} T=0
$$

solving by separating

$$
\begin{aligned}
& \frac{T^{\prime}}{T}=-\frac{(2 n-1)^{2} \pi^{2}}{36} \Rightarrow \int \frac{T^{\prime}}{T}=-\int \frac{(2 n-1)^{2} \pi^{2}}{36} \\
& \Rightarrow \ln T=-\frac{(2 n-1)^{2} \pi^{2}}{36} t+c \Rightarrow T_{n}(t)=c_{n} e^{-\frac{(2 n-1)^{2} \pi^{2}}{36} t}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
v_{n}(x, t) & =X_{n}(x) T_{n}(t) \\
& =c_{n} \cos \frac{(2 n-1) \pi x}{2} e^{-\frac{(2 n-1)^{2} \pi^{2}}{36} t}
\end{aligned}
$$

so we let

$$
v(x, t)=\sum_{n=1}^{\infty} c_{n} \cos \frac{(2 n-1) \pi x}{2} e^{-\frac{(2 n-1)^{2} \pi^{2}}{36} t}
$$

Using I.C. to compute coefficients we have

$$
v(x, 0)=\sum_{n=1}^{\infty} c_{n} \cos \frac{(2 n-1) \pi x}{2}=-3 \cos \frac{7 \pi x}{2}
$$

by equating coefficients: $c_{1}=0, c_{2}=0, c_{3}=0, c_{4}=-3, c_{4}=0, \ldots$

$$
v(x, t)=-3 \cos \frac{7 \pi x}{2} e^{-\frac{49 \pi^{2}}{36} t}
$$

is the solution.
iii) Now use the results of b) i) and ii) to find $u(x, t)$.

Solution to iii)

$$
u(x, t)=v(x . t)+2
$$

so

$$
u(x, t)=-3 \cos \frac{7 \pi x}{2} e^{-\frac{49 \pi^{2}}{36} t}+2
$$

