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Chapter 2 - Special Methods for First Order Equations
Consider the equation

Mx,y  Nx,yy ′  0 1

This equation is first order and first degree. The functions Mx,y and Nx,y are given.
Often we write this as

Mx,ydx  Nx,ydy  0 2

Separation of Variables

Equation (2) takes a simple form in the special case when

Mx,y  Ax and Nx,y  By.


Axdx  Bydy  0

That is the variables separate.
If we Integrate 

Axdx  Bydy  c.

Example x2dx  ydy  0 

 x2dx   ydy  c.

Which leads to

x3

3
 y2

2
 c.

Now consider the I.V.P.

D.E. Axdx  Bydy  0

I.C. yx0  y0

Integrating from x0 ,y0  → x,y 


x0

x
Axdx  

y0

y
Bydy  0

.
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Example D.E. cosx dx  y2dy  0 I.C. y  0




x
cosx dx  

0

y
y2 dy  0  sinx x

|  y3

3
y
0  0

or sinx − sin  y3

3  0  sinx  y3

3  0 

y3  −3sinx

Example Solve xdy  ydx  0 This equation is not separable as is.
Divide by xy 

dy
y  dx

x  0

 lnx  lny  c or ln|xy|  c  ∣ xy ∣ k
 xy  k 

y  k
x ∀x ≠ 0.

Example Solve

2y − sinyy ′  t  sin t y0  1

Solution: We rewrite the equation as

2y − sinydy  t − sin tdt  0

which is separable. Integrating we have

y2  cosy  t2

2
 cos t  c

The initial condition implies

1  cos1  1  c

so

y2  cosy  t2

2
 cos t  2  cos1

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

First Order linear differential equations

Clearly not all equations are as simple as the equation Axdx  Bydy  0. Consider the equation

ax dy
dx

 bxy  cx.

Assuming ax ≠ 0 we divide by ax 

y ′  Pxy  Qx 1

or

dy  Pxy − Qxdx  0.
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We want to solve 1. Consider first the homogeneous problem

y ′  Pxy  0.


dy
y  Pxdx  0

which is separable.

 ln|y|  Pxdx  c  ∣ y ∣ e
c− Pxdx

Hence

y  ece
− Pxdx

 ke
− Pxdx

is the homogeneous solution.
Non-homogeneous case:

dy
dx

 Pxy  Qx.

We shall use variation of parameters. Note that any constant times e
− Pxdx

is also a solution of the
homogeneous equation 1.

To solve the nonhomogeneous equation we shall try a function times e
− Pxdx

i.e.

y  vxe
− Pxdx



y ′  v ′e
− Pxdx

 ve
− Pxdx

−Px.

Now the D.E. 

v ′e
− Pxdx

 ve
− Pxdx

−Px  Pxve
− Pxdx

 Q



v ′  Qe
 Pxdx



v  Qe
 Pxdx

 c.

Therefore the solution is

y  ve
− Pxdx

 ce
− Pxdx

 Qe
 Pxdx

e
− Px

homogeneous solution  particular solution

Example: y ′  y
x  1

 x2 P  1
x1 Q  x2 .

Consider y ′  y
x  1

 0  dy
y  dx

x  1
 0 or ln|yx  1|  c  y  k/x  1.
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Using the formula for the homogeneous solution, we have

y  ke
− Pxdx

 ke
− dx

x1  ke−lnx1  k
x  1

.

We now solve the nonhomogeneous equation. Since y  ve
− Pxdx

 v
x  1



y ′  v ′
x  1

− v
x  12

.
The D.E. 

v ′
x  1

− v
x  12  v

x  12  x2


v ′  x2x  1  x3  x2

Thus

v  x4

4
 x3

3
 c

and therefore

y  c
x  1


x4

4
 x3

3
x  1

.

Remark: The variation of parameters method works because the assumption y  ve
− Pdx

leads to v ′

 Qe
 Pdx

. Since v  y e
 Pdx



d
dx

ye
 Pdx

 Qe
 Pdx



e
 Pdx

y ′  Py  Qe
 Pdx

.

Therefore if we multiply the original equation by e
 Pdx

 we get an integrable form right away.

Example y ′  y
x  1

 x2 (Again)

P  1
x  1

e
 Pdx

 e
 dx

x1  e lnx1  x  1 

x  1y ′  y  x2x  1

or

d
dx
x  1y  x2x  1


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x  1y  x4

4
 x3

3
 c

as before.

Summary:

To solve y ′ Py  Q multiply both sides by the integrating factor I  e
 Pdx

. Then the L.H.S. becomes

d
dx

ye
 Pdx

 e
 Pdx

Q

and the solution is found by integrating both sides. This is called the Method of the Integrating Factor.

We can use the above to solve the I.V.P.

D.E. y ′  Pxy  Qx

I.C. yx0  y0

Use the integrating factor

I  e


x0

x
Ptdt

and integrate both sides from x0 to x.

Example Solve

ty ′  4y  6t2 y1  3 t  0

Solution: This equation is first order linear and may be written as

y  4
t y ′  6t

We multiply the DE by e
 Ptdt

 e
 4

t dt
 e4 ln t  t4 and get

t4y ′  4t3y  6t5

or
d
dt
t4y  6t5

Hence

t4y  t6  c

and

y  t2  c
t4

The initial condition yields

3  1  c or c  2

so

y  t2  2
t4

Example Solve

y ′  2t−1  e−y y1  0

Solution: Rewrite the equation as
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eyy ′ − 2
t ey  1

Let z  ey. Then z ′  eyy ′ and the DE becomes

z ′ − 2
t z  1

This is first order linear in z. Multiply the DE by e
− 2

t dt
 e−2 ln t  t−2 to get

t−2z − 2t−3z  t−2

or

t−2z′  t−2

Hence

t−2z  −t−1  c

or

z  ey  −t  ct2

The initial condition implies

1  −1  c or c  2

so

ey  −t  2t2

or

y  ln2t2 − t

Example Here are two video slide show examples. Slide Example 1 Slide Example 2

You will need Real Player to view this. To get it click on Real Player.
Example The equation

dy
dx

 Pxy  Qxyn n any real number

is known as Bernoulli’s equation.
We shall suppose that n ≠ 0 or 1, since we already know how to solve the equation for these two
cases. Multiplying by y−n yields

y−ny ′  Pxy−n1  Qx

Let z  y−n1 Then z ′  −n  1y−ny ′ 
z ′

1 − n
 Pxz  Qx.

This is a linear differential equation for z which can be solved. For example, consider the equation

x
dy
dx

 y  xy−4


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y ′  1
x y  y−4 n  −4



y4y ′  y5

x  1

Let z  y5  z ′  5y4y ′ 
z ′
5
 z

x  1



z ′  5
x z  5

Thus the integrating factor is e
 5

x dx
 e5lnx  x5 so we have

d
dx
x5z  5x5



x5z  5 x6

6
 c


z  5 x

6
 cx−5

Since z  y5 
y5  5 x

6
 cx−5.

Example Solve

y ′  xy  xe−x
2
y−3

This is a Bernoulli equation. Multiply both sides by y3 to get

y3y ′  xy4  xe−x
2

Let z  y4 so that z ′  4y3y ′. The DE may then be written as
z ′
4
 xz  xe−x

2

or

z ′  4xz  4xe−x
2

This equation is a first order linear DE in z. Then I  e
 Pdx

 e
 4xdx

 e2x2
. Multiplying the DE by this

integrating factor yields

z ′e2x2  4xe2x2  4xex2

or

dze2x2 
dx

 4xex2

Integrating we have

ze2x2  2ex2  C

Since z  y4 the solution is
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y4  2e−x
2  Ce−2x2

Example Solve

x2y ′  xy  −y− 3
2

Solution: This is a Bernoulli Equation.

y ′  1
x y  − 1

x2 y−
3
2  y

3
2

dy
dx

 1
x y

5
2  − 1

x2

.
Now we let

v  y1−n  y1−− 3
2   y

5
2 .

Then

dv
dx

 5
2

y
3
2

dy
dx

 2
5

dv
dx

 y
3
2

dy
dx

.

Substituting, the equation becomes
2
5

dv
dx

 1
x v  −x−2


dv
dx

 5
2x

v  − 5
2

x−2.

This is a linear equation in v. The integrating factor is

I  e
 Pdx

 e
 5

2x
dx
 e

5
2

lnx
 x

5
2 .

Multiplying the DE by I gives

dv
dx

x
5
2  5

2x
vx

5
2  − 5

2
x−2x

5
2 .

or

d
dx
x

5
2 v  − 5

2
x

1
2

  d
dx
x

5
2 vdx   − 5

2
x

1
2 dx

 x
5
2 v  − 5

3
x

3
2  C

 v  − 5
3

x−1  Cx
−5
2  y

5
2

 yx  − 5
3

x−1  Cx
−5
2

2
5
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Exact Differential Equations
Definition: The differential expression

Mx,ydx  Nx,ydy

is called exact  ∃ a function fx,y that is differentiable in some region R of the x,y-plane, i.e. ∂f
∂x , ∂f

∂y

exist and are continuous in R and such that

∂f
∂x  M

∂f
∂y  N ∀ x,y ∈ R.

Remark: Since dfx,y  ∂f
∂x dx  ∂f

∂y dy  Mdx  Ndy is exact  dfx,y  Mdx  Ndy.

Definition: The differential equation

Mx,ydx  Nx,ydy  0 1

is called an exact differential equation if the left hand side is an exact differential.

Remark: When the differential equation 1 is exact


dfx,y  Mdx  Ndy  0 2.

Using this we may solve the differential equation. For if yx is the solution, then 2 may be integrated
with respect to x to yield

fx,y  c 3.

Conversely if 3 defines y as a differential function of x, then this yx is a solution of the differential
equation. For 3 

df
dx

 0  ∂f
∂x  ∂f∂y

dy
dx

by the chain rule. 

M  N
dy
dx

 0.

Example: xdy  ydx  0 Here M  y and N  x
Consider fx,y  xy

dfx,y  xdy  ydx

Since fx  y and fy  x

df  fx dx  fy dy  ydx  xdy  0

Therefore

fx,y  xy  c

determines the solution. 
y  c

x

9



Check dy
dx

 − c
x2 dy  − c

x2 dx .  xdy  ydx  x − c
x2 dx  c

x dx  0.

Thus if we know that a certain differential equation is exact we can solve it.

Question: When is a differential equation exact? The answer is given by following theorem.
Theorem If Mx,y and Nx,y are continuous functions and have continuous partial

derivatives in some region R of the x,y-plane, then the expression

Mx,ydx  Nx,ydy

is an exact differential 
My  Nx

throughout R.

Remark: If fx  M and fy  N, then  fxy  My  Nx  fyx.

Example: ydx  xdy Here M  y and N  x so that My  0  Nx and we see that this equation is
exact.

Example: ex cosydx  ex sinydy
We rewrite the equation as

ex cosydx − ex sinydy  0.

Thus
M  ex cosy and N  −ex siny and therefore My  −ex sin y and Nx  −ex sin y. Therefore this

equation is exact.  ∃ fx,y such that fx  M fy  N, i.e.,

∂f
∂x  ex cosy



fx,y   ex cosy dx  gy  ex cosy  gy.

gy ? We must have
∂f
∂y  N  −ex siny.

Now
∂f
∂y  −ex siny  g ′y  −ex siny

 g ′y  0  g  const  c Therefore

fx,y  ex cosy  c

 solution is fx,y  k, i.e.

ex cosy  c  k  k ′.

Example Solve

1  y2  2t  1y
dy
dt

 0, y0  1

Solution: We write the equation as
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1  y2dt  2t  1ydy  0

The M  1  y2 and N  2t  1y and

My  2y  Nt

Hence the equation is exact and there exists a function ft,y such that

ft  M and fy  N

So

ft  1  y2  f  t  ty2  gy
Also

fy  2ty  g ′y  N  2ty  2y

Therefore

gy  y2  C

and

f  t  ty2  y2  C

and the solution is given by

t  ty2  y2  k

y0  1 implies

1  k

Thus

t  ty2  y2  1

or

y  1 − t
1  t

Example Here is a video slide show example. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Integrating factors
Recall: Mx,ydx  Nx,ydy  0 is exact  My  Nx. When the equation is exact,  ∃ fx,y such that
fx  M and fy  N and df  Mdx  Ndy  0.  fx,y  c gives the solution to the equation.

Clearly not every differential equation is exact.

Question: Can we make Mdx  Ndy  0 exact when it is not?
We want to find a function ux,y such that when we multiply the differential equation by ux,y, then

uMdx  uNdy  0

is exact. ux,y is called an integrating factor.
Example ydx  y2 − xdy  0
M  y N  y2 − x

11



My  1 Nx  −1 Thus the equation is not exact.
We multiply by a function u so that

uydx  uy2 − xdy  0

is exact.


uyy  uy2 − xx


uyy  u  ux y2 − x − u.

This last equation is harder to solve in general than the original. However, we do not need the general
solution. We need any u which when multiplied times the equation makes it exact. If we assume
ux  0, then u  uy, i.e. u is only a function of y and our partial differential equation for u becomes
the ordinary differential equation

y du
dy

 2u  0

which has the solution u  1
y2 . Multiplying the original equation by this u yields

1
y dx  1 − x

y2  dy  0

Since now M  1
y and N  1 − x

y2   My  − 1
y2  Nx  this new equation is exact.



fx  1
y


f  x

y  gy.

Hence

fy  − x
y2  g ′y  − x

y2  1

 g ′y  1  g  y  c
Therefore

fx,y  x
y  y  c

and the solution is x
y  y  k.

Example −ydx  xdy  0
N  x M  −y  My  −1 and Nx  1 Clearly this equation is not exact.

Multiply by u and get

− uydx  uxdy  0.

Then
My  u  yuy and Nx  −u − uxx.

u  yuy  −u − uxx

Setting uy  0 yields u  1
x2 

− y
x2 dx  1

x dy  0
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This new equation is exact.


fx  −
y
x2 and fy  −

y
x2



f  y
x  hx

fx  −
y
x2  h ′x  − y

x2


h ′  0



h  c  f  y
x  c

 solution is
y
x  k

.
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