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Chapter 2 - Special Methods for First Order Equations
Consider the equation

Mx,y  Nx,yy ′  0 1

This equation is first order and first degree. The functions Mx,y and Nx,y are given.
Often we write this as

Mx,ydx  Nx,ydy  0 2

Separation of Variables

Equation (2) takes a simple form in the special case when

Mx,y  Ax and Nx,y  By.


Axdx  Bydy  0

That is the variables separate.
If we Integrate 

Axdx  Bydy  c.

Example x2dx  ydy  0 

 x2dx   ydy  c.

Which leads to

x3

3
 y2

2
 c.

Now consider the I.V.P.

D.E. Axdx  Bydy  0

I.C. yx0  y0

Integrating from x0 ,y0  → x,y 


x0

x
Axdx  

y0

y
Bydy  0

.
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Example D.E. cosx dx  y2dy  0 I.C. y  0




x
cosx dx  

0

y
y2 dy  0  sinx x

|  y3

3
y
0  0

or sinx − sin  y3

3  0  sinx  y3

3  0 

y3  −3sinx

Example Solve xdy  ydx  0 This equation is not separable as is.
Divide by xy 

dy
y  dx

x  0

 lnx  lny  c or ln|xy|  c  ∣ xy ∣ k
 xy  k 

y  k
x ∀x ≠ 0.

Example Solve

2y − sinyy ′  t  sin t y0  1

Solution: We rewrite the equation as

2y − sinydy  t − sin tdt  0

which is separable. Integrating we have

y2  cosy  t2

2
 cos t  c

The initial condition implies

1  cos1  1  c

so

y2  cosy  t2

2
 cos t  2  cos1

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

First Order linear differential equations

Clearly not all equations are as simple as the equation Axdx  Bydy  0. Consider the equation

ax dy
dx

 bxy  cx.

Assuming ax ≠ 0 we divide by ax 

y ′  Pxy  Qx 1

or

dy  Pxy − Qxdx  0.
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We want to solve 1. Consider first the homogeneous problem

y ′  Pxy  0.


dy
y  Pxdx  0

which is separable.

 ln|y|  Pxdx  c  ∣ y ∣ e
c− Pxdx

Hence

y  ece
− Pxdx

 ke
− Pxdx

is the homogeneous solution.
Non-homogeneous case:

dy
dx

 Pxy  Qx.

We shall use variation of parameters. Note that any constant times e
− Pxdx

is also a solution of the
homogeneous equation 1.

To solve the nonhomogeneous equation we shall try a function times e
− Pxdx

i.e.

y  vxe
− Pxdx



y ′  v ′e
− Pxdx

 ve
− Pxdx

−Px.

Now the D.E. 

v ′e
− Pxdx

 ve
− Pxdx

−Px  Pxve
− Pxdx

 Q



v ′  Qe
 Pxdx



v  Qe
 Pxdx

 c.

Therefore the solution is

y  ve
− Pxdx

 ce
− Pxdx

 Qe
 Pxdx

e
− Px

homogeneous solution  particular solution

Example: y ′  y
x  1

 x2 P  1
x1 Q  x2 .

Consider y ′  y
x  1

 0  dy
y  dx

x  1
 0 or ln|yx  1|  c  y  k/x  1.
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Using the formula for the homogeneous solution, we have

y  ke
− Pxdx

 ke
− dx

x1  ke−lnx1  k
x  1

.

We now solve the nonhomogeneous equation. Since y  ve
− Pxdx

 v
x  1



y ′  v ′
x  1

− v
x  12

.
The D.E. 

v ′
x  1

− v
x  12  v

x  12  x2


v ′  x2x  1  x3  x2

Thus

v  x4

4
 x3

3
 c

and therefore

y  c
x  1


x4

4
 x3

3
x  1

.

Remark: The variation of parameters method works because the assumption y  ve
− Pdx

leads to v ′

 Qe
 Pdx

. Since v  y e
 Pdx



d
dx

ye
 Pdx

 Qe
 Pdx



e
 Pdx

y ′  Py  Qe
 Pdx

.

Therefore if we multiply the original equation by e
 Pdx

 we get an integrable form right away.

Example y ′  y
x  1

 x2 (Again)

P  1
x  1

e
 Pdx

 e
 dx

x1  e lnx1  x  1 

x  1y ′  y  x2x  1

or

d
dx
x  1y  x2x  1
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x  1y  x4

4
 x3

3
 c

as before.

Summary:

To solve y ′ Py  Q multiply both sides by the integrating factor I  e
 Pdx

. Then the L.H.S. becomes

d
dx

ye
 Pdx

 e
 Pdx

Q

and the solution is found by integrating both sides. This is called the Method of the Integrating Factor.

We can use the above to solve the I.V.P.

D.E. y ′  Pxy  Qx

I.C. yx0  y0

Use the integrating factor

I  e


x0

x
Ptdt

and integrate both sides from x0 to x.

Example Solve

ty ′  4y  6t2 y1  3 t  0

Solution: This equation is first order linear and may be written as

y  4
t y ′  6t

We multiply the DE by e
 Ptdt

 e
 4

t dt
 e4 ln t  t4 and get

t4y ′  4t3y  6t5

or
d
dt
t4y  6t5

Hence

t4y  t6  c

and

y  t2  c
t4

The initial condition yields

3  1  c or c  2

so

y  t2  2
t4

Example Solve

y ′  2t−1  e−y y1  0

Solution: Rewrite the equation as
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eyy ′ − 2
t ey  1

Let z  ey. Then z ′  eyy ′ and the DE becomes

z ′ − 2
t z  1

This is first order linear in z. Multiply the DE by e
− 2

t dt
 e−2 ln t  t−2 to get

t−2z − 2t−3z  t−2

or

t−2z′  t−2

Hence

t−2z  −t−1  c

or

z  ey  −t  ct2

The initial condition implies

1  −1  c or c  2

so

ey  −t  2t2

or

y  ln2t2 − t

Example Here are two video slide show examples. Slide Example 1 Slide Example 2

You will need Real Player to view this. To get it click on Real Player.
Example The equation

dy
dx

 Pxy  Qxyn n any real number

is known as Bernoulli’s equation.
We shall suppose that n ≠ 0 or 1, since we already know how to solve the equation for these two
cases. Multiplying by y−n yields

y−ny ′  Pxy−n1  Qx

Let z  y−n1 Then z ′  −n  1y−ny ′ 
z ′

1 − n
 Pxz  Qx.

This is a linear differential equation for z which can be solved. For example, consider the equation

x
dy
dx

 y  xy−4
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y ′  1
x y  y−4 n  −4



y4y ′  y5

x  1

Let z  y5  z ′  5y4y ′ 
z ′
5
 z

x  1



z ′  5
x z  5

Thus the integrating factor is e
 5

x dx
 e5lnx  x5 so we have

d
dx
x5z  5x5



x5z  5 x6

6
 c


z  5 x

6
 cx−5

Since z  y5 
y5  5 x

6
 cx−5.

Example Solve

y ′  xy  xe−x
2
y−3

This is a Bernoulli equation. Multiply both sides by y3 to get

y3y ′  xy4  xe−x
2

Let z  y4 so that z ′  4y3y ′. The DE may then be written as
z ′
4
 xz  xe−x

2

or

z ′  4xz  4xe−x
2

This equation is a first order linear DE in z. Then I  e
 Pdx

 e
 4xdx

 e2x2
. Multiplying the DE by this

integrating factor yields

z ′e2x2  4xe2x2  4xex2

or

dze2x2 
dx

 4xex2

Integrating we have

ze2x2  2ex2  C

Since z  y4 the solution is
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y4  2e−x
2  Ce−2x2

Example Solve

x2y ′  xy  −y− 3
2

Solution: This is a Bernoulli Equation.

y ′  1
x y  − 1

x2 y−
3
2  y

3
2

dy
dx

 1
x y

5
2  − 1

x2

.
Now we let

v  y1−n  y1−− 3
2   y

5
2 .

Then

dv
dx

 5
2

y
3
2

dy
dx

 2
5

dv
dx

 y
3
2

dy
dx

.

Substituting, the equation becomes
2
5

dv
dx

 1
x v  −x−2


dv
dx

 5
2x

v  − 5
2

x−2.

This is a linear equation in v. The integrating factor is

I  e
 Pdx

 e
 5

2x
dx
 e

5
2

lnx
 x

5
2 .

Multiplying the DE by I gives

dv
dx

x
5
2  5

2x
vx

5
2  − 5

2
x−2x

5
2 .

or

d
dx
x

5
2 v  − 5

2
x

1
2

  d
dx
x

5
2 vdx   − 5

2
x

1
2 dx

 x
5
2 v  − 5

3
x

3
2  C

 v  − 5
3

x−1  Cx
−5
2  y

5
2

 yx  − 5
3

x−1  Cx
−5
2

2
5
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Exact Differential Equations
Definition: The differential expression

Mx,ydx  Nx,ydy

is called exact  ∃ a function fx,y that is differentiable in some region R of the x,y-plane, i.e. ∂f
∂x , ∂f

∂y

exist and are continuous in R and such that

∂f
∂x  M

∂f
∂y  N ∀ x,y ∈ R.

Remark: Since dfx,y  ∂f
∂x dx  ∂f

∂y dy  Mdx  Ndy is exact  dfx,y  Mdx  Ndy.

Definition: The differential equation

Mx,ydx  Nx,ydy  0 1

is called an exact differential equation if the left hand side is an exact differential.

Remark: When the differential equation 1 is exact


dfx,y  Mdx  Ndy  0 2.

Using this we may solve the differential equation. For if yx is the solution, then 2 may be integrated
with respect to x to yield

fx,y  c 3.

Conversely if 3 defines y as a differential function of x, then this yx is a solution of the differential
equation. For 3 

df
dx

 0  ∂f
∂x  ∂f∂y

dy
dx

by the chain rule. 

M  N
dy
dx

 0.

Example: xdy  ydx  0 Here M  y and N  x
Consider fx,y  xy

dfx,y  xdy  ydx

Since fx  y and fy  x

df  fx dx  fy dy  ydx  xdy  0

Therefore

fx,y  xy  c

determines the solution. 
y  c

x
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Check dy
dx

 − c
x2 dy  − c

x2 dx .  xdy  ydx  x − c
x2 dx  c

x dx  0.

Thus if we know that a certain differential equation is exact we can solve it.

Question: When is a differential equation exact? The answer is given by following theorem.
Theorem If Mx,y and Nx,y are continuous functions and have continuous partial

derivatives in some region R of the x,y-plane, then the expression

Mx,ydx  Nx,ydy

is an exact differential 
My  Nx

throughout R.

Remark: If fx  M and fy  N, then  fxy  My  Nx  fyx.

Example: ydx  xdy Here M  y and N  x so that My  0  Nx and we see that this equation is
exact.

Example: ex cosydx  ex sinydy
We rewrite the equation as

ex cosydx − ex sinydy  0.

Thus
M  ex cosy and N  −ex siny and therefore My  −ex sin y and Nx  −ex sin y. Therefore this

equation is exact.  ∃ fx,y such that fx  M fy  N, i.e.,

∂f
∂x  ex cosy



fx,y   ex cosy dx  gy  ex cosy  gy.

gy ? We must have
∂f
∂y  N  −ex siny.

Now
∂f
∂y  −ex siny  g ′y  −ex siny

 g ′y  0  g  const  c Therefore

fx,y  ex cosy  c

 solution is fx,y  k, i.e.

ex cosy  c  k  k ′.

Example Solve

1  y2  2t  1y
dy
dt

 0, y0  1

Solution: We write the equation as
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1  y2dt  2t  1ydy  0

The M  1  y2 and N  2t  1y and

My  2y  Nt

Hence the equation is exact and there exists a function ft,y such that

ft  M and fy  N

So

ft  1  y2  f  t  ty2  gy
Also

fy  2ty  g ′y  N  2ty  2y

Therefore

gy  y2  C

and

f  t  ty2  y2  C

and the solution is given by

t  ty2  y2  k

y0  1 implies

1  k

Thus

t  ty2  y2  1

or

y  1 − t
1  t

Example Here is a video slide show example. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Integrating factors
Recall: Mx,ydx  Nx,ydy  0 is exact  My  Nx. When the equation is exact,  ∃ fx,y such that
fx  M and fy  N and df  Mdx  Ndy  0.  fx,y  c gives the solution to the equation.

Clearly not every differential equation is exact.

Question: Can we make Mdx  Ndy  0 exact when it is not?
We want to find a function ux,y such that when we multiply the differential equation by ux,y, then

uMdx  uNdy  0

is exact. ux,y is called an integrating factor.
Example ydx  y2 − xdy  0
M  y N  y2 − x
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My  1 Nx  −1 Thus the equation is not exact.
We multiply by a function u so that

uydx  uy2 − xdy  0

is exact.


uyy  uy2 − xx


uyy  u  ux y2 − x − u.

This last equation is harder to solve in general than the original. However, we do not need the general
solution. We need any u which when multiplied times the equation makes it exact. If we assume
ux  0, then u  uy, i.e. u is only a function of y and our partial differential equation for u becomes
the ordinary differential equation

y du
dy

 2u  0

which has the solution u  1
y2 . Multiplying the original equation by this u yields

1
y dx  1 − x

y2  dy  0

Since now M  1
y and N  1 − x

y2   My  − 1
y2  Nx  this new equation is exact.



fx  1
y


f  x

y  gy.

Hence

fy  − x
y2  g ′y  − x

y2  1

 g ′y  1  g  y  c
Therefore

fx,y  x
y  y  c

and the solution is x
y  y  k.

Example −ydx  xdy  0
N  x M  −y  My  −1 and Nx  1 Clearly this equation is not exact.

Multiply by u and get

− uydx  uxdy  0.

Then
My  u  yuy and Nx  −u − uxx.

u  yuy  −u − uxx

Setting uy  0 yields u  1
x2 

− y
x2 dx  1

x dy  0
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This new equation is exact.


fx  −
y
x2 and fy  −

y
x2



f  y
x  hx

fx  −
y
x2  h ′x  − y

x2


h ′  0



h  c  f  y
x  c

 solution is
y
x  k

.
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