Ma 221

Chapter 2 - Special Methods for First Order Equations

Consider the equation

$$
\begin{equation*}
M(x, y)+N(x, y) y^{\prime}=0 \tag{1}
\end{equation*}
$$

This equation is first order and first degree. The functions $M(x, y)$ and $N(x, y)$ are given.
Often we write this as

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{2}
\end{equation*}
$$

Separation of Variables

Equation (2) takes a simple form in the special case when

$$
M(x, y)=A(x) \text { and } N(x, y)=B(y) .
$$

\Rightarrow

$$
A(x) d x+B(y) d y=0
$$

That is the variables separate.
If we Integrate \Rightarrow

$$
\int A(x) d x+\int B(y) d y=c .
$$

Example $x^{2} d x+y d y=0 \Rightarrow$

$$
\int x^{2} d x+\int y d y=c
$$

Which leads to

$$
\frac{x^{3}}{3}+\frac{y^{2}}{2}=c .
$$

Now consider the I.V.P.

$$
\begin{aligned}
\text { D.E. } A(x) d x+B(y) d y & =0 \\
\text { I.C. } y\left(x_{0}\right) & =y_{0}
\end{aligned}
$$

Integrating from $\left(x_{0}, y_{0}\right) \rightarrow(x, y) \Rightarrow$

$$
\int_{x_{0}}^{x} A(x) d x+\int_{y_{0}}^{y} B(y) d y=0
$$

Example D.E. $\cos x d x+y^{2} d y=0$ I.C. $y(\pi)=0$

$$
\begin{aligned}
& \int_{\pi}^{x} \cos x d x+\int_{0}^{y} y^{2} d y=\left.0 \Rightarrow \sin x\right|_{\pi} ^{x}+\left.\frac{y^{3}}{3}\right|_{0} ^{y}=0 \\
& \text { or } \sin x-\sin \pi+\frac{y^{3}}{3}=0 \Rightarrow \sin x+\frac{y^{3}}{3}=0 \Rightarrow \\
& y^{3}=-3 \sin x
\end{aligned}
$$

Example Solve $x d y+y d x=0 \quad$ This equation is not separable as is.
Divide by $x y \Rightarrow$

$$
\begin{aligned}
& \Rightarrow \ln x+\ln y=c \text { or } \ln |x y|=c \Rightarrow|x y|=k \\
& \Rightarrow x y= \pm k \Rightarrow \\
& \quad y=\frac{d y}{y}+\frac{d x}{x}=0 \\
& \\
& \Rightarrow x y
\end{aligned}
$$

Example Solve

$$
(2 y-\sin y) y^{\prime}+t=\sin t \quad y(0)=1
$$

Solution: We rewrite the equation as

$$
(2 y-\sin y) d y+(t-\sin t) d t=0
$$

which is separable. Integrating we have

$$
y^{2}+\cos y+\frac{t^{2}}{2}+\cos t=c
$$

The initial condition implies

$$
1+\cos 1+1=c
$$

SO

$$
y^{2}+\cos y+\frac{t^{2}}{2}+\cos t=2+\cos 1
$$

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

First Order linear differential equations

Clearly not all equations are as simple as the equation $A(x) d x+B(y) d y=0$. Consider the equation

$$
a(x) \frac{d y}{d x}+b(x) y=c(x)
$$

Assuming $a(x) \neq 0$ we divide by $a(x) \Rightarrow$

$$
\begin{equation*}
y^{\prime}+P(x) y=Q(x) \tag{1}
\end{equation*}
$$

or

$$
d y+(P(x) y-Q(x)) d x=0
$$

We want to solve (1). Consider first the homogeneous problem

$$
y^{\prime}+P(x) y=0
$$

\Rightarrow

$$
\frac{d y}{y}+P(x) d x=0
$$

which is separable.

$$
\Rightarrow \ln |y|+\int P(x) d x=c \quad \Rightarrow|y|=e^{c-\int P(x) d x}
$$

Hence

$$
y= \pm e^{c} e^{-\int P(x) d x}=k e^{-\int P(x) d x}
$$

is the homogeneous solution.
Non-homogeneous case:

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

We shall use variation of parameters. Note that any constant times $e^{-\int P(x) d x}$ is also a solution of the homogeneous equation (1).
To solve the nonhomogeneous equation we shall try a function times $e^{-\int P(x) d x}$ i.e.

$$
\begin{gathered}
y=v(x) e^{-\int P(x) d x} \\
y^{\prime}=v^{\prime} e^{-\int P(x) d x}+v e^{-\int P(x) d x}(-P(x)) .
\end{gathered}
$$

Now the D.E. \Rightarrow

$$
v^{\prime} e^{-\int P(x) d x}+v e^{-\int P(x) d x}(-P(x))+P(x) v e^{-\int P(x) d x}=Q
$$

\Rightarrow
\Rightarrow

$$
v=\int Q e^{\int P(x) d x}+c
$$

Therefore the solution is

$$
y=v e^{-\int P(x) d x}=c e^{-\int P(x) d x}+\left(\int Q e^{\int P(x) d x}\right) e^{\left.-\int P(x)\right)}
$$

homogeneous solution + particular solution
Example: $y^{\prime}+\frac{y}{x+1}=x^{2} \quad P=\frac{1}{x+1} \quad Q=x^{2}$.
Consider $y^{\prime}+\frac{y}{x+1}=0 \Rightarrow \frac{d y}{y}+\frac{d x}{x+1}=0$ or $\ln |y(x+1)|=c \Rightarrow y=k /(x+1)$.

Using the formula for the homogeneous solution, we have

$$
y=k e^{-\int P(x) d x}=k e^{-\int \frac{d x}{x+1}}=k e^{-\ln (x+1)}=\frac{k}{x+1}
$$

We now solve the nonhomogeneous equation. Since $y=v e^{-\int P(x) d x}=\frac{v}{x+1}$ \Rightarrow

$$
y^{\prime}=\frac{v^{\prime}}{x+1}-\frac{v}{(x+1)^{2}}
$$

The D.E. \Rightarrow

$$
\frac{v^{\prime}}{x+1}-\frac{v}{(x+1)^{2}}+\frac{v}{(x+1)^{2}}=x^{2}
$$

\Rightarrow

$$
v^{\prime}=x^{2}(x+1)=x^{3}+x^{2}
$$

Thus

$$
v=\frac{x^{4}}{4}+\frac{x^{3}}{3}+c
$$

and therefore

$$
y=\frac{c}{x+1}+\frac{\frac{x^{4}}{4}+\frac{x^{3}}{3}}{x+1}
$$

Remark: The variation of parameters method works because the assumption $y=v e^{-\int P d x}$ leads to v^{\prime} $=Q e^{\int P d x}$. Since $v=y e^{\int P d x} \Rightarrow$

$$
\Rightarrow
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(y e^{\int P d x}\right)=Q e^{\int P d x} \\
& e^{\int P d x}\left[y^{\prime}+P y\right]=Q e^{\int P d x}
\end{aligned}
$$

Therefore if we multiply the original equation by $e^{\int P d x} \Rightarrow$ we get an integrable form right away.
Example $y^{\prime}+\frac{y}{x+1}=x^{2}$ (Again)
$P=\frac{1}{x+1}$
$e^{\int P d x}=e^{\int \frac{d x}{x+1}}=e^{\ln (x+1)}=x+1 \Rightarrow$

$$
(x+1) y^{\prime}+y=x^{2}(x+1)
$$

or

$$
\frac{d}{d x}[(x+1) y]=x^{2}(x+1)
$$

\Rightarrow

$$
(x+1) y=\frac{x^{4}}{4}+\frac{x^{3}}{3}+c
$$

as before.

Summary:

To solve $y^{\prime}+P y=Q$ multiply both sides by the integrating factor $I=e^{\int P d x}$. Then the L.H.S. becomes

$$
\frac{d}{d x}\left(y e^{\int P d x}\right)=e^{\int P d x} Q
$$

and the solution is found by integrating both sides. This is called the Method of the Integrating Factor.

We can use the above to solve the I.V.P.

$$
\begin{gathered}
\text { D.E. } y^{\prime}+P(x) y=Q(x) \\
\text { I.C. } y\left(x_{0}\right)=y_{0}
\end{gathered}
$$

Use the integrating factor

$$
I=e^{\int_{x_{0}}^{x} P(t) d t}
$$

and integrate both sides from x_{0} to x.

Example Solve

$$
t y^{\prime}+4 y=6 t^{2} \quad y(1)=3 t>0
$$

Solution: This equation is first order linear and may be written as

$$
y+\frac{4}{t} y^{\prime}=6 t
$$

We multiply the DE by $e^{\int P(t) d t}=e^{\int \frac{4}{t} d t}=e^{4 \ln t}=t^{4}$ and get

$$
t^{4} y^{\prime}+4 t^{3} y=6 t^{5}
$$

or

$$
\frac{d}{d t}\left(t^{4} y\right)=6 t^{5}
$$

Hence

$$
t^{4} y=t^{6}+c
$$

and

$$
y=t^{2}+\frac{c}{t^{4}}
$$

The initial condition yields

$$
3=1+c \text { or } c=2
$$

so

$$
y=t^{2}+\frac{2}{t^{4}}
$$

Example Solve

$$
y^{\prime}=2 t^{-1}+e^{-y} y(1)=0
$$

Solution: Rewrite the equation as

$$
e^{y} y^{\prime}-\frac{2}{t} e^{y}=1
$$

Let $z=e^{y}$. Then $z^{\prime}=e^{y} y^{\prime}$ and the DE becomes

$$
z^{\prime}-\frac{2}{t} z=1
$$

This is first order linear in z. Multiply the DE by $e^{-\int \frac{2}{t} d t}=e^{-2 \ln t}=t^{-2}$ to get

$$
t^{-2} z-2 t^{-3} z=t^{-2}
$$

or

$$
\left(t^{-2} z\right)^{\prime}=t^{-2}
$$

Hence

$$
t^{-2} z=-t^{-1}+c
$$

or

$$
z=e^{y}=-t+c t^{2}
$$

The initial condition implies

$$
1=-1+c \text { or } c=2
$$

so

$$
e^{y}=-t+2 t^{2}
$$

or

$$
y=\ln \left(2 t^{2}-t\right)
$$

Example Here are two video slide show examples. Slide Example 1 Slide Example 2

You will need Real Player to view this. To get it click on Real Player.
Example The equation

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n} \quad n \text { any real number }
$$

is known as Bernoulli's equation.
We shall suppose that $n \neq 0$ or 1 , since we already know how to solve the equation for these two cases. Multiplying by y^{-n} yields

$$
y^{-n} y^{\prime}+P(x) y^{-n+1}=Q(x)
$$

Let $z=y^{-n+1}$ Then $z^{\prime}=(-n+1) y^{-n} y^{\prime} \Rightarrow$

$$
\frac{z^{\prime}}{1-n}+P(x) z=Q(x)
$$

This is a linear differential equation for z which can be solved. For example, consider the equation

$$
\Rightarrow \quad x \frac{d y}{d x}+y=x y^{-4}
$$

$$
y^{\prime}+\frac{1}{x} y=y^{-4} \quad(n=-4)
$$

\Rightarrow

$$
y^{4} y^{\prime}+\frac{y^{5}}{x}=1
$$

Let $z=y^{5} \Rightarrow z^{\prime}=5 y^{4} y^{\prime} \Rightarrow$

$$
\frac{Z^{\prime}}{5}+\frac{Z}{X}=1
$$

\Rightarrow

$$
z^{\prime}+\frac{5}{X} z=5
$$

Thus the integrating factor is $e^{\int \frac{5}{x} d x}=e^{5 \ln x}=x^{5}$ so we have

$$
\begin{array}{ll}
& \frac{d}{d x}\left(x^{5} z\right)=5 x^{5} \\
\Rightarrow & x^{5} z=5 \frac{x^{6}}{6}+c \\
& z=5 \frac{x}{6}+c x^{-5}
\end{array}
$$

Since $z=y^{5} \Rightarrow$

$$
y^{5}=5 \frac{x}{6}+c x^{-5}
$$

Example Solve

$$
y^{\prime}+x y=x e^{-x^{2}} y^{-3}
$$

This is a Bernoulli equation. Multiply both sides by y^{3} to get

$$
y^{3} y^{\prime}+x y^{4}=x e^{-x^{2}}
$$

Let $z=y^{4}$ so that $z^{\prime}=4 y^{3} y^{\prime}$. The DE may then be written as

$$
\frac{z^{\prime}}{4}+x z=x e^{-x^{2}}
$$

or

$$
z^{\prime}+4 x z=4 x e^{-x^{2}}
$$

This equation is a first order linear DE in z. Then $I=e^{\int P d x}=e^{\int 4 x d x}=e^{2 x^{2}}$. Multiplying the DE by this integrating factor yields

$$
z^{\prime} e^{2 x^{2}}+4 x e^{2 x^{2}}=4 x e^{x^{2}}
$$

or

$$
\frac{d\left(z e^{2 x^{2}}\right)}{d x}=4 x e^{x^{2}}
$$

Integrating we have

$$
z e^{2 x^{2}}=2 e^{x^{2}}+C
$$

Since $z=y^{4}$ the solution is

$$
y^{4}=2 e^{-x^{2}}+C e^{-2 x^{2}}
$$

Example Solve

$$
x^{2} y^{\prime}+x y=-y^{-\frac{3}{2}}
$$

Solution: This is a Bernoulli Equation.

$$
y^{\prime}+\frac{1}{x} y=-\frac{1}{x^{2}} y^{-\frac{3}{2}} \Rightarrow y^{\frac{3}{2}} \frac{d y}{d x}+\frac{1}{x} y^{\frac{5}{2}}=-\frac{1}{x^{2}}
$$

Now we let

$$
v=y^{1-n}=y^{1-\left(-\frac{3}{2}\right)}=y^{\frac{5}{2}} .
$$

Then

$$
\frac{d v}{d x}=\frac{5}{2} y^{\frac{3}{2}} \frac{d y}{d x} \Rightarrow \frac{2}{5} \frac{d v}{d x}=y^{\frac{3}{2}} \frac{d y}{d x}
$$

Substituting, the equation becomes

$$
\Rightarrow \quad \frac{2}{5} \frac{d v}{d x}+\frac{1}{x} v=-x^{-2} .
$$

This is a linear equation in v. The integrating factor is

$$
I=e^{\int P d x}=e^{\int \frac{5}{2 x} d x}=e^{\frac{5}{2} \ln x}=x^{\frac{5}{2}} .
$$

Multiplying the DE by I gives

$$
\frac{d v}{d x} x^{\frac{5}{2}}+\frac{5}{2 x} v x^{\frac{5}{2}}=-\frac{5}{2} x^{-2} x^{\frac{5}{2}}
$$

or

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{\frac{5}{2}} v\right)=-\frac{5}{2} x^{\frac{1}{2}} \\
\Rightarrow & \int \frac{d}{d x}\left(x^{\frac{5}{2}} v\right) d x=\int-\frac{5}{2} x^{\frac{1}{2}} d x \\
\Rightarrow & x^{\frac{5}{2}} v=-\frac{5}{3} x^{\frac{3}{2}}+C \\
\Rightarrow & v=-\frac{5}{3} x^{-1}+C x^{\frac{-5}{2}}=y^{\frac{5}{2}} \\
\Rightarrow & y(x)=\left(-\frac{5}{3} x^{-1}+C x^{\frac{-5}{2}}\right)^{\frac{2}{5}}
\end{aligned}
$$

Exact Differential Equations

Definition: The differential expression

$$
M(x, y) d x+N(x, y) d y
$$

is called exact $\Leftrightarrow \exists$ a function $f(x, y)$ that is differentiable in some region R of the x, y-plane, i.e. $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist and are continuous in R and such that

$$
\frac{\partial f}{\partial x}=M \quad \frac{\partial f}{\partial y}=N \quad \forall(x, y) \in R .
$$

Remark: Since $d f(x, y)=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y \Rightarrow M d x+N d y$ is exact $\Leftrightarrow d f(x, y)=M d x+N d y$.
Definition: The differential equation

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

is called an exact differential equation if the left hand side is an exact differential.

Remark: When the differential equation (1) is exact

$$
\begin{align*}
& \Rightarrow \quad d f(x, y)=M d x+N d y=0
\end{align*}
$$

Using this we may solve the differential equation. For if $y(x)$ is the solution, then (2) may be integrated with respect to x to yield

$$
\begin{equation*}
f(x, y)=c \tag{3}
\end{equation*}
$$

Conversely if (3) defines y as a differential function of x, then this $y(x)$ is a solution of the differential equation. For (3) \Rightarrow

$$
\frac{d f}{d x}=0=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}
$$

by the chain rule. \Rightarrow

$$
M+N \frac{d y}{d x}=0
$$

Example: $x d y+y d x=0$
Here $M=y$ and $N=x$
Consider $f(x, y)=x y$

$$
d f(x, y)=x d y+y d x
$$

Since $f_{x}=y$ and $f_{y}=x$

$$
d f=f_{x} d x+f_{y} d y=y d x+x d y=0
$$

Therefore

$$
f(x, y)=x y=c
$$

determines the solution. \Rightarrow

$$
y=\frac{c}{X}
$$

Check $\frac{d y}{d x}=-\frac{c}{x^{2}} \quad d y=-\frac{c}{x^{2}} d x . \Rightarrow x d y+y d x=x\left(-\frac{c}{x^{2}} d x\right)+\frac{c}{x} d x=0$.
Thus if we know that a certain differential equation is exact we can solve it.

Question: When is a differential equation exact? The answer is given by following theorem.
Theorem If $M(x, y)$ and $N(x, y)$ are continuous functions and have continuous partial derivatives in some region R of the x, y-plane, then the expression

$$
M(x, y) d x+N(x, y) d y
$$

is an exact differential \Leftrightarrow

$$
M_{y}=N_{x}
$$

throughout R.
Remark: If $f_{x}=M$ and $f_{y}=N$, then $\Rightarrow f_{x y}=M_{y}=N_{x}=f_{y x}$.

Example: $y d x+x d y$ Here $M=y$ and $N=x$ so that $M_{y}=0=N_{x}$ and we see that this equation is exact.

Example: $e^{x} \cos y d x=e^{x} \sin y d y$
We rewrite the equation as

$$
e^{x} \cos y d x-e^{x} \sin y d y=0
$$

Thus
$M=e^{x} \cos y$ and $N=-e^{x} \sin y$ and therefore $M_{y}=-e^{x} \sin y$ and $N_{x}=-e^{x} \sin y$. Therefore this equation is exact. $\Rightarrow \exists f(x, y)$ such that $f_{x}=M f_{y}=N$, i.e.,

$$
\frac{\partial f}{\partial x}=e^{x} \cos y
$$

\Rightarrow

$$
f(x, y)=\int e^{x} \cos y d x+g(y)=e^{x} \cos y+g(y) .
$$

$g(y)=$? We must have

$$
\frac{\partial f}{\partial y}=N=-e^{x} \sin y
$$

Now

$$
\frac{\partial f}{\partial y}=-e^{x} \sin y+g^{\prime}(y)=-e^{x} \sin y
$$

$\Rightarrow g^{\prime}(y)=0 \Rightarrow g=$ const $=c$ Therefore

$$
f(x, y)=e^{x} \cos y+c
$$

\Rightarrow solution is $f(x, y)=k$, i.e.

$$
e^{x} \cos y=c+k=k^{\prime} .
$$

Example Solve

$$
1+y^{2}+2(t+1) y \frac{d y}{d t}=0, \quad y(0)=1
$$

Solution: We write the equation as

$$
\left(1+y^{2}\right) d t+2(t+1) y d y=0
$$

The $M=1+y^{2}$ and $N=2(t+1) y$ and

$$
M_{y}=2 y=N_{t}
$$

Hence the equation is exact and there exists a function $f(t, y)$ such that

$$
f_{t}=M \text { and } f_{y}=N
$$

So

$$
f_{t}=1+y^{2} \Rightarrow f=t+t y^{2}+g(y)
$$

Also

$$
f_{y}=2 t y+g^{\prime}(y)=N=2 t y+2 y
$$

Therefore

$$
g(y)=y^{2}+C
$$

and

$$
f=t+t y^{2}+y^{2}+C
$$

and the solution is given by

$$
t+t y^{2}+y^{2}=k
$$

$y(0)=1$ implies

$$
1=k
$$

Thus

$$
t+t y^{2}+y^{2}=1
$$

or

$$
y=\sqrt{\frac{1-t}{1+t}}
$$

Example Here is a video slide show example. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Integrating factors

Recall: $M(x, y) d x+N(x, y) d y=0$ is exact $\Leftrightarrow M_{y}=N_{x}$. When the equation is exact, $\Rightarrow \exists f(x, y)$ such that $f_{x}=M$ and $f_{y}=N$ and $d f=M d x+N d y=0 . \Rightarrow f(x, y)=c$ gives the solution to the equation.

Clearly not every differential equation is exact.

Question: Can we make $M d x+N d y=0$ exact when it is not?
We want to find a function $u(x, y)$ such that when we multiply the differential equation by $u(x, y)$, then

$$
u M d x+u N d y=0
$$

is exact. $u(x, y)$ is called an integrating factor.

$$
\begin{array}{ll}
\text { Example } & y d x+\left(y^{2}-x\right) d y=0 \\
M=y & N=y^{2}-x
\end{array}
$$

$M_{y}=1 \quad N_{x}=-1$ Thus the equation is not exact.
We multiply by a function u so that

$$
u y d x+u\left(y^{2}-x\right) d y=0
$$

is exact.
\Rightarrow

$$
[u y]_{y}=\left[u\left(y^{2}-x\right)\right]_{x}
$$

\Rightarrow

$$
u_{y} y+u=u_{x}\left(y^{2}-x\right)-u .
$$

This last equation is harder to solve in general than the original. However, we do not need the general solution. We need any u which when multiplied times the equation makes it exact. If we assume $u_{x}=0$, then $u=u(y)$, i.e. u is only a function of y and our partial differential equation for u becomes the ordinary differential equation

$$
y \frac{d u}{d y}+2 u=0
$$

which has the solution $u=\frac{1}{y^{2}}$. Multiplying the original equation by this u yields

$$
\frac{1}{y} d x+\left(1-\frac{x}{y^{2}}\right) d y=0
$$

Since now $\mathrm{M}=\frac{1}{y}$ and $\mathrm{N}=\left(1-\frac{x}{y^{2}}\right) \Rightarrow \mathrm{M}_{y}=-\frac{1}{y^{2}}=\mathrm{N}_{x} \Rightarrow$ this new equation is exact. \Rightarrow

$$
f_{x}=\frac{1}{y}
$$

\Rightarrow

$$
f=\frac{x}{y}+g(y) .
$$

Hence

$$
f_{y}=-\frac{x}{y^{2}}+g^{\prime}(y)=-\frac{x}{y^{2}}+1
$$

$\Rightarrow g^{\prime}(y)=1 \Rightarrow g=y+c$
Therefore

$$
f(x, y)=\frac{x}{y}+y+c
$$

and the solution is $\frac{x}{y}+y=k$.
Example $\quad-y d x+x d y=0$
$N=x \quad M=-y \Rightarrow M_{y}=-1$ and $N_{x}=1$ Clearly this equation is not exact.
Multiply by u and get

$$
-u(y) d x+u(x) d y=0
$$

Then
$\mathrm{M}_{y}=u+y u_{y}$ and $\mathrm{N}_{x}=-u-u_{x} x$.

$$
u+y u_{y}=-u-u_{x} x
$$

Setting $u_{y}=0$ yields $u=\frac{1}{x^{2}} \Rightarrow$

$$
-\frac{y}{x^{2}} d x+\frac{1}{x} d y=0
$$

This new equation is exact.

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \\
& f=-\frac{y}{x^{2}} \text { and } f_{y}=-\frac{y}{x^{2}} \\
& f=h(x) \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \text { x }=-\frac{y}{x^{2}}+h^{\prime}(x)=-\frac{y}{x^{2}} \\
& \Rightarrow h^{\prime}=0 \\
& \Rightarrow \text { solution is } \\
&
\end{aligned}
$$

