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CHAPTER 4 - Linear Differential Equations

We shall now begin a detailed study of the second-order linear differential equation
a(x)y" + by’ +c(xy = f(x)

Fundamental theory of second-order linear equations

The following theorem gives information concerning the existence of solutions of second-order linear
differential equations. We shall accept it as valid without proof.

Theorem 1: Consider the Initial Value Problem

D.E. a(x)y" + b(x)y’ +c(x)y = f(x)

I.C. y(Xo0) =Yo  Y'(X0) = VYo

If a(x), b(x), c(x), f(x) are all continuous functions in the interval I, where X, € | and a(x) = 0 for
all x in I, then the IVP possesses a unique solution. This solution has a continuous derivative and is
defined throughout I.

Example
D.E. a(x)y" + b(x)y' + c(x)y = 0 Homogeneous Equation

I.C. y(Xo) =0 y'(Xo) =0

One solution is y(x) = 0. Theorem 1 = only solution isy = 0.

We shall assume from now on that a, b, ¢,and f are continuous in a common interval 1 and a(x) # 0 in |
so that Theorem 1 holds.

Notation: Let
LLy] = a()y” +b(Xx)y’ + c(X)y.
Then L[2] = 2¢c(x)
L[3x] = 3b(x) + 3xc(x).
With this notation the second order differential equation a(x)y” + b(x)y' + c(y)y = f(x) can be written

as L[y]= f(x). The homogeneous case is when f(x) = 0 = L[y] = 0. This is called the homogeneous
equation. If f(x) # 0 = a nonhomogeneous equation.

L[y] is called a linear operator because it has the following property.



Theorem 2:
L[c1y1 + Cay2] = CiL[y1] + CoL[y2]

where y; and y, are any twice differential functions and ¢, and c, are any constants.
Proof:

L[ciy1 + Cay2] = a(X) (C1y1 +Cay2)" +b(X) (C1y1 + C2y2)' + c(X) (C1y1 + CaY2)
= a(x) (C1y1 +Cay3) +b(X) (Cayi +Cays) +C(X) (Ciy1 + C2y2)
= c[aX)y1 + b(X)y1 + c(X)y1] + c2[a(x)yz + b(x)yz + c(x)y2]

= L[C1y1 + C2y2] = CiL[y1] + C2L[y2]
Properties of solutions of second order equations.

Theorem 3: If y1(x) and y»(x) are solutions of the homogeneous equation L[y] = 0, then

y = C1y1(X) + C2y2(X) is also a solution.

Proof. L[ciy: + Cay2] = C1L[y1] + c2L[y2] from above. Since y; is a solution of L[y] = 0 = L[y1] = 0.
Similarly L[y.] = 0.

Hence L[C1y1 + C2Y2] = CiL[y1] + C2L[y2] = 0+ 0 = 0=y = C1y1 + C,Y2 is also a solution of

L(y) = 0.

Example y"-9y =0 e* and e=* are solutions. Theorem3 = y = c;e* + c,e > isalso a
solution.

Remark. We desire to be able to find the general solution of L[y] = 0. The above theorem tells us that
if y; and y; are solutions, then c;y1 + C,Y2 is a solution, but it does not tell us that this is the general
solution. In order to know when one has a general solution it is necessary to introduce the concept of
the linear independence of two functions.

Definition: Two functions y1(x) and y.(x) are called linearly dependent (LD) in an interval I if it is
possible to find two constants ¢, and ¢, not both zero, so that

Ciy1(X) + C2y2(x) =0 ¥x € I.

Two functions are called linearly independent (LI) if they are not linearly dependent, i.e., if
Ciyi(X) +Coy2(x) =0 Vx el = ¢y =c, =0.

Remark. If two functions are LD in | = one of the functions is equal to a constant times the other in I.
Example (a) x, 2x are LD in any interval I, since

-2)x+(1) 2x=0 Vxel
(b) x2, x are LI inany interval I, since
Cix2+cCx=0 Vxel

is impossible because this equation has at most two real roots in I. Thus, we must have ¢; = ¢, = 0.



(c) Two functions are LD if one of them is the zero function. Ify; = 0, then
Ciy1+0-y, =¢ci10+0.y=0Vvx el
and any ¢; # 0.

(d) If 21 # Ay, then e** and e*>* are LI for if
Ci1eM* + et =0

C1 = —Coetehx,

But c; is a constant and therefore the last equation = A; = A,, which is a contradiction.
Facts from algebra needed in the proofs of the next theorems.

di d

dix+dzy = d
1X+ 02y = O3 }hasaunique solution < *0

1.

€1X+ €y = €3 €1 €2

Ifd; = e3 = 0anddet # 0= x =y = 0is the only solution.

di d

d doy=0
X+ a2y } has nontrivial solution. < =0

2.

eix+ey=0 €1 €2

Definition: The Wronskian of two differentiable functions y; and y, is defined to be

yi(X) ya(x)
yi(¥) ya2(x)

Theorem 4. If W[y1(x),y2(x)] is different from zero for at least one point in an interval I, then y;(x) and
y2(x) are L1in I.

WIy1(x), Y2(x)] = =yi(X)yz (X) = y1(x)y2(x).

Proof. Suppose y1, Yy, are LD. Then 3 constants c1, Cz, ot both zero, such that

C1y;(X) + C2y,(x) = 0
C1y1(X) + C2y5(x) = 0

By assumption these two equations have a nontrivial solution c4, ¢, at each point x in I. Therefore the
determinant of the coefficients (by 2) must be zero for each x. But the determinant of coefficients
= WI[y1(x),y2(x)] and W = O for at least one pointin I. = y; and y, are not LD.

Corollary. Ify;,y, are LD in Il = W[y1(X), y2(X)] =0inl.

Remark. Converse of Theorem 4 is not true in general, i.e., there exist functions which are LI in an



interval | and whose Wronskian is= 0in I.
However, if y; and y; are solutions of L[y] = 0 then the following converse holds.

Theorem 5. If y;1(x), y2(x) are LI solutions of L[y] = 0 in I, then W[y1(X), y2(X)] is never zero in I.

Proof. If W[y1(x),y2(x)] = 0 for some x, € I, then the equations
Clyl(Xo) + Czyz(Xo) =0
C1y1(Xo) + C2y2(Xo) = 0

have a nontrivial solution, i.e. 3 ¢y, c, not both zero satisfying the system. For these values of ¢, and
c, the function y(x) = c1y1(X) + C2y2(x) is a solution of L[y] = 0 and satisfies the initial conditions
y(Xo) = 0,y'(Xo) = 0. However, by Theorem 1 the only solution of this problem is y(x) = 0 =
C1y1(X) + C2y2(X) = 0 VX € | = yi1,y, are LD. Contradiction! = W[ ] is never zero in I.

Corollary. The Wronskian of 2 solutions of L[y] = 0 is either identically zero (if solutions are LD) or
never zero (if solutions are LI).

Theorem 6. If y;(x) and y,(x) are LI solutions of L[y] = 0, theny = c1y; + C,Y is the general solution
of L[y] = 0.

Example e* and e=** are LI solutions of y” — 9y = 0 = general solution isy = c1e* + c,e™*.

Theorem 6 tells us that the problem of finding the general solution of L[y] = 0 is reduced to finding any
two linearly independent solutions.

Example This example is a video slide show. Slide Example
You will need Real Player to view this. To get it click on Real Player.

Question: Do two LI solutions of L[y] = 0 actually exist? The answer is given in the affirmative by the
next theorem.

Theorem 7. 3 two linear independent solutions of L[y] = 0.

Proof. Lety;(x) be the unique solution of L[y] = 0 with initial conditions y;(xo) = 1, y1(Xo) = 0, and
y2(x) be the unique solution of L[y] = 0 with initial conditions y,(Xo) = 0, y5 (Xo) = 1. Note that y;
and y, exist by Theorem 1. Now y; and y, are LI by Theorem 5 since
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W[y1(Xo),Y2(X0)] = =1

Theorem 8. If y, is any particular solution of the nonhomogeneous equation L[y] = f(x) and yn is the
general solution of the homogeneous equation L[y] = 0, then the general solution of L[y] = f(x) is

Y =Yp+Yn



Example Solvey” — 9y = e*
We know that y, = c1% +coe”>. y, =? Assumey, = Ae*

> Ae*-0Ae* =e*=>-8A=1 A:_% :yp:—%ex
=y = 1%+ coe™ — L e is the general solution.

Theorem 9. Principle of superposition. Ify; is a solution of L[y] = f; and y, is a solution of L[y] = f, ,
theny = y; + Y, is asolution of L[y] = f; + fa.

Example Solvey” — 9y = e* + 5. Before we found thaty = —% e* was a particular solution of
y" — 9y = e*. To find
a particular solution of y" — 9y = 5 assumey = k = k = —2 . The general solution of equation is
therefore

y = c16¥ + cre7¥ - %ex - %

Extension: If fori =1, 2 ,..., n, y;isasolution of L[y] = fj, then Z:‘:lyi is a solution of

Lyl =20,

Complex-valued Solutions
A complex-valued function f of a real variable x is a function of the form

f(X) = u(x) +iv(x)

where u(x) and v(x) are real functions and i = /-1.

Definition. Iff = u+iv, u ,v real functions, then f is continuous if u and v are continuous; f is
differential if u and v are differential and

f'(x) = u'(x) +iv'(x).
Example a) f(x) = 3x +ix? = f'(x) = 3 + 2ix

b) (;j—x(3x +ix%)2 = 2(3x + ix?)(3 + 2ix) = 2(9x — 2x3 + 9ix?)

c) Let
E(x) = e®(cosbx + isinbx)
Then

E'(x) = ae®(cosbx + isinbx) + e¥*(=bsinbx + bicos bx)
= e*[a(coshx + isinbx) + bi(cosbx + isinbx)]
= e®[a + bi](cosbx + isinbx).



Hence

E'(x) = (a + bi)E(X).
Based on this we define the complex exponential via

e @)X = ea coshx + ie® sinbx

a=0=

ed™ = coshx + isinbx.
This is called Euler’s formula. Hence

pla+bix — gax , gbix_

Example y = e satisfiesy” +y = 0sincey’ = ie™ y’ = —e* = —e* +e* = 0.

The theorem below gives the connection between real and complex solutions of a linear differential
equation with real coefficients.

Theorem 1. Consider the differential equation

a()y" + by’ +c(x)y =0
where a(x), b(x), and c(x) are real functions. The complex functiony = u + iv, where u and v are real,
is a solution of this equation < u and v are solutions.

Proof. As before we denote the equation by L[y] = 0. Itis easily shown that L[y] = L[u] + iL[v] where
L[u] and L[v] are real. Thereforey is a solution < L[y] = L[u] +iL[v] = 0. Since a complex number is
zero < its real and imaginary parts are zero,

= L[y] =0 < L[u] =0and L[v] = 0 < uand v solutions.

Example y = e isasolutionofy” +y = 0. Since e* = cosx + isinx = cosx and sinx are
solutions. This is easily verified.

Homogeneous Linear Equations with Constant Coefficients

We shall now discuss the problem of solving the homogeneous equation
ay" +by" +cy =0 (%)
where a,b and c are real constants and a + 0.

Possible candidates for a solution are x and powers of x. These are no good. Inx is also no good. We
shall try e*. If y = e* is a solution of (*)

= ar?e™ + bie™ + ce™ = e (aA? +bA +c¢) = 0. This s to be a solution Vx. =
al?+bAl+c=0.

This equation for A is called the auxiliary or characteristic equation.

b+ /b2 _
b+ l23a 4ac  _ bJZ_raﬂ A—b?_4ac

It has the solution A =

There are three possibilities:
(1) A >0 two real, distinct roots



(2) A =0 onereal root, repeated

(3) A < 0 two imaginary roots which are the complex conjugates of each other, i.e. if A1 = a +if >
lz =0 — Iﬁ

We shall now discuss the three cases in detail.

Case 1. A > 0. There are two real distinct roots A1,4,, where 11 = A,

A —b + yb2 —4ac A —b - b2 —4ac
1= 2

2a - 2a

= e** and e*#* are both solutions of the differential equation. These functions are LI, = general
solution is

y = 184X + et

where 4; and A, are both real and 11 # A».
Example 2y"-y' -3y =0

=202-1-3=0
or

@r=3)A+1) =021 =-1 2, =2 :>y:c1e‘x+c2e+%x,
2

Case 2. A = 0. There is one real, repeated root A, = —% = e** is a solution. We need a second LI

solution. To find it we shall use the method of variation of parameters. We seek a solution of the form
y = v(x)e*,
where v(x) is a function to be determined. Now

y' = verX 4yl et

and
y" = v'erX 4 2v/ A eMX 4 vaZetx
=
av’(x)et* + 2av' 184 + avaZer + bv'et* 4 bva et + cver* = 0
=

av’ + (2al1 +b)V' +(@ri+bi;+c)v =0

v

=>Vv" =0 (why?)=>
V = C1 + CaX

y = vetX = ¢ etiX 4 coxeti

is a solution of the differential equation in the case where there exists one repeated root A;. Since e**



and xc*** are LI = this is the general solution.

Example y"—-4y'+4y =0
A2—41+4=0 or(A-2)2 =0 = one real, repeated root A = 2. =

y = 162 +Cp xe?,

Case 3. A < 0 2 complex roots

P —b+yb?-4ac _ _p . ivdac-b?

2a “2a 2a
=
—g+if=__b -/g_b_2
AM=a+ip 2a +1 /5 122
. . 2
Azza—lﬁz—z—%ﬂ/%—f—az

where a and f are real numbers.
= two complex solutions. e@Px =e®(cos Bx + isin Bx) and e@ A = e*(cos Bx — isin BX)

Since the differential equation has real coefficients, = real and imaginary parts of above are solutions,
ie.,

e*cos px and e®sin Bx are both solutions in this case. These are LI functions.

= the solution is

y = e®(Acos fx + Bsin fx) where A,B real constants.

Example
32y" —40y' +17y =0

3242 -40A+17 =0

. 40+ /1600 - 4(32)(17) 40+ /1600 — 2176 _ 40+i/576 _ 5+ 9 _ 5,3
B 2(32) B 2(32) 232 8 878
Thus
-5, 3; -2 _3;
Al—8+8|and/12 g gl
=
— etx 3 in3
y=e (Ac058x+Bsm8x)

Example Write down a second order homogeneous linear differential equation with real constant
coefficients whose solutions are



l —2x e .
2e cos3x and = sin 3X.

=>aq=-2 f=3sothatA; =-2+3iand A, =-2-3i.
=

pP(A) = [A = (=2 +3D)][A - (-2 - 3i)]
= [A+2-3i[A+2+3i]
=A+Q2+3MA+(2-3D)A+4+9

=A2+42+13
-4+ J16 - 4(1)(13 ;
(Check: A = 5 as _ _4£—rb' =-2+3i)

= equation is
y'+4y'+13y =0
Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Undetermined Coefficients

Let us now consider the problem of solving
ay" +by' +cy =f(x) a=0 (%)

a,b, c real constants. We know that the general solution isy = yn +y,, Where

yh = the solution of the homogeneous equation
and

Yp = a particular solution of the equation
We know how to find y, . We shall now discuss ways of finding y, for certain special functions f(x) .

1. f(x) = Ke® K constant, «a constant.
Thus we seek y, for

ay” + by’ + cy = Ke*.
Due to the exponential form of f(x) we seek y, of the form

Yp = Ae™
A =? The differential equation (*) =
(aa? + ba + c)Ae® = Ke*



K
aon?+ba+c

Ke ax

Yo = aon?+ba+c

The above is a particular solution provided the denominator is non-zero. Note that the denominator is
p(1) = aA? + bi +c with A = a. This is the characteristic polynomial with 1 = a.

If p(a) = 0, = we do not have ay, . However, p(a) = 0 = « is a root of characteristic equation. = e*
is solution of the homogeneous equation, and therefore Ae** cannot be a solution of the
nonhomogeneous equation. If p(a) = 0, we try

Yp = Axe™
= Yp = Aaxe®™ + Ae™ and y, = Aa?xe™ + Aae™ + Aae™ = Aa’xe™ + 2Aae™
Substitution into the differential equation (x) =
Axe®™[aa® + ba + c] + Ae™ [2aa + b] = Ke*

g
__ K
2ac+b
=
_ _Kxe* : _
yp_2<ewz+b it pla) =0

provided, of course, that 2aa + b # 0. Note that p(1) = al? +bA+c=p'(1) =2ail+b
=

Kxe®
p'(a)
Ifp(a) =0andp'(a) =0 = abovey,isnogood. Butp'(¢) =0 =2aa+b=0 = a= —2—*;. =>aq
is a double (repeated) root of ai? +bA +c¢ = 0. Hence both e* and xe® are solutions of the
homogeneous equation if p(a) = p’(a) = 0, and these cannot therefore be solutions of the
nonhomogeneous equation. If p(a) = p'(a) = 0 we try

Yp = when p(a) = 0and p'(a) # 0

Yp = Ax2e™,
Differentiating and substituting into the equation leads to
=
K K
A=
2a  p'(e)

sincep’'(A) =2ar+b = p"(A) =2a
Thus

—_ K 2n0X —n’ —
yp - p//(a) X°e If p(a) - p (a) - 0

p"(a) # 0 since a # 0 by assumption.

Summary: A particular solution of L[y] = ke** is
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Ke(lX

Yp = W ifp(a) #0

_ Kxe* . _ /
Yp = (@) if p(a) =0,p'(a) #0

_ K ax g —_n' _
yp - p//(a) X2e If p(a) - p ((Z) - O

Example (a)y" -5y’ +4y = 2e*
Homogeneous solution: p(A) = A2 -51+4=(A-4)(A-1) =A1=4, 1=y, = C1e*+Ce¥
Now to find a particular solution for 2e*. = a =1 p(1) =0 Sincep'(A) =21-5
p'(l)=2-5=-3+0

=

_ kxe® 2xe*

p'(a) -3

Yp

Y =VYn+Yp = C18*+Cre¥ — %xeX

(b) y" =5y +4y = 3 + 2¢e*

Yh = C1€¥ +C6® p(A) = A2 -51+4

Consider y" -5y’ +4y = 3

3=ke™ with k=3 a=0p0)=4+0 =y,==2
=

— X 4x i_; X
Y(X) = C1e¥ + Coe™ + 7 3xe

(c) Let us now consider an I1VVP for this DE.
y'—by'+4y =3+2e* y(0)=1y'(0)=0

y(0) =c1+c2+% -1
y'(X) = c1€* + 4ce® — %xeX - %ex
y'(0) = ¢y +4c, — % -0
Thus we have the two equations below for ¢; and c; :
-1
Ci+Cyr = 4
_ 2
C1+4c; = 3
, Solution is: [c1 = +,C2 = =0
—Loxy S a3 2y0x
y(x) = 9e + 36e + 3xe

SNB Check:



y" —5y' +4y = 3 + 2e*
y(0) =1 ,, Exact solution is: {+e* +
y'(0) =0

S

X _ 2 ypX 4 3
TR 3xe+4}

2. f(x) = k cos px or f(x) = k sin Bx
For example, we seek a particular solution of

L[y] = ay” + by’ + cy = kcos Bx
We shall use the complex exponential to solve fory, . Recall
ke = kcos Bx + iksin Bx.

Hence we consider also the equation
L[v] = av” + bv' + cv = ksin Bx

By multiplying this last equation by i and adding the result to L[y] =
L[y] +iL[v] = kcos Bx + iksin gx = ke’
But iL[v] = L[iv], sinceL is linear. Hence if we letw =y + iv = the equation
aw” + bw' + cw = kel
or
L[y] +iL[v] = L[y] + L[iv] = L[y + iv] = L[w] = ke’

and therefore we have the complex equation L[w] = ke'” for w. To find w, for this we use the

formulas derived above. Then we find y, from y, = Re w, = real part of wy. For f(x) = k sinx we

have y, = Im w, =imaginary part of w,.

Example Find a particular solution of
y" +7y" + 12y = 3c0s2x

Letw =y +iv= find wp forw” + 7w’ + 12w = 3e?*. Now p(A) = A2 + 741+ 12 =

p(a) =p2i)=Qi)?+7Ri)+12=-4+14i+12+ 0

=

3eZix _ 362ix
p(2i) 8+ 14i°

Wp:

To find y, we shall rationalize the denominator.

12



_ _Be™  8-14i
8+14i = 8-14i
3(8 — 14i)e?*
64 + 196
~ 3(8 - 14i)e?x
B 260
= 23@(8 — 14i)[cos 2x + isin 2x]

i[Scost + 14sin2x] + ii[Ssin 2x — 14cos 2x]

260 260

Thus
— __3 i
Yp = Rew, = 560 [8cos2x + 14sin2x]
Example
y" + 4y = 3sin2x
=

w” + 4w = 32X
p(A)=A%2+4 = p(2i) =0and p'(1) = 2. Now p'(2i) £ 0

=

_3xe2ix _3xe2ix l__g. 2ix:_§' ..
Wy = 5 (20) =S Xy =7 ixe 7 iX[C0S 2X + isin2X]
— 3y COS 2X + 3 xsin2x
4 4
=
Yp = Imw, = —%xcos2x

Example y" + 7y’ + 12y = 3cos2x again.
Lety, = A cos2x + B sin2x
Yp =—2Asin2x + 2B cos2x Yy, = 4A cos2x — 4Bsin2x

-
—4Acos2x — 4Bsin2x — 14Asin2x + 14Bcos2x + 12Acos2x + 12Bsin2x = 3¢os 2x
=
c0S2X[8A + 14B] + sin2x[8B — 14A] = 3c0s2x
=

8A+14B =3 8B-14A=0 > B:%A
8A+ L(T)A=3 8A+%A=3> 1889 A-3 A=8& 5B=2
= Yp = o COS2X+ 3= sin2x as before.
1. f(X) = Bo +B1x+++++Byx" polynomial.

We want y, for

13



ay” + by +cy = Bo+BiX+ ¢ +Bpx"
We try a solution of the form
Yp = Qn(X) = Ao + A1X + =« « +AX"
If p(0) # 0, then when we substitute Q, into the equation we will get a polynomial of degree n and
we can determine A s by equating coefficients of like powers of x. If p(0) = 0, but p’(0) # 0 use
Yp = XQn(x). Similarly if p(0) = p'(0) = 0 take y, = x2Qn(X) .
Example

y" + 3y = 2x% + 3x
In this example the right hand side is a polynomial of degree 2.
p(A) = A2+31 s0 p(0)=0. p'(A) =24+3 and p'(0) # O

=
Yp = XQ2(X) = X(Ao + ArX + Axx?) = Aox + Arx? + Axx3

Yp = Ao + 2A1x + 3Axx3 = yp = 2A1 + 6AxX

The differential equation =
2A1 4+ 6AX + 3A0 + 6A1X + 9AX% = 2x% + 3X

2A1 + 3A0 =0and 6A2 + 6A1 = 3and 9A2 = 2.

2A2=£ A2+A1=i %+A1:%:A1:l_lzﬂz 5

9 2 2 9 18 18
2(%)+3A0=0 Ao=—%=—2—57:>

IV. f(x) = (Bo+ BiX+++«+Byx")e*

We want a particular solution for the DE
ay" + by +cy = (Bo+Bix+«««+Byx")e*

We seek a solution of the form
Yp = Qn(x)e™ if p(a) # 0
Yp = XQn(X)™ ifp(a) =0, and p'(a) = 0
Yo = X2Qn(x)e™ ifp(a) = p'(a) = 0

Additional Examples
Example Solve

y" +y = XCOSX — COSX
Solution: Note that y, = Cycosx + C,sinx.

First we will find a particular solution for cosx. Consider
y" +y = —cosx

14



and
V"' +Vv = —sinx
Multiply the second equation by i and add it to the first equation.
Lettingw =y + iv, we get
w" +w = —(cosx +isinx) = —e™
Since p(A) = A2+ 1and p(i) = 0,p'(A) =24, sop'(i) =2i # 0

xei 1., .ix
Wp, = ——FF+— = F1IX€
Pa 2i 2
Hence
Yp, = Rew,, = —% sinx

Now we shall find a particular solution for xcosx. Consider
y" +y = Xcosx
and
V" +Vv = xsinx
Multiplying the second equation by i, adding it to the first equation and letting w = y + iv, we have
W +w = x(cosx + isinx) = xe™
Since e™ is a homogeneous solution and xe™ corresponds to a right hand side of e, we let
Wp, = (A1X + Apx?)e™
to deal with a right side of the form xe™.
Wp, = (A1 + 2A2x)e™ + i(ArX + Axx?)e™
Wy, = 2A2e% + 2i(A1 + 2Ax)e™ — (Arx + Axx?)e™
Substituting into the DE leads to
2Ae™ + 2i(A1 + 2Ax)e™ = xe™

Therefore
2A2 + 2|A1 =0
in -1 __i
4iA, =1 or A, = i 7
Then
_ 1, 1
A = i A, 7
_lix_izix:l_iz il
Wp, = 4xe 4xe (4x 4x)(cosx+|smx)
Yp, = Rew,, = Ly cosx + Lx2sinx
p2 p2 4 4
Thus
Y = V¥h+VYp, +Yp, = C1c0sx + Cysinx — %sinx+ %xcosx+ %xzsinx

Example Consider the equation
y" -3y’ +2y = 3e* — 10cos 3x
(a) Find the general solution to this equation.

15
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y' =3y +2y =0 characteristic equation: r>-3r+2=0; r=1,2

yh = Cie*¥ + Cpe*

Yp = Ae ™ + Bsin3x + Ccos3x [note: e~ is not a homogeneous solution.]
Yp = —Ae ™ + 3Bc0s3x — 3Csin3x
Yp = Ae™* — 9Bsin3x — 9C cos 3x

After plugging vy, into the given DE, y, — 3y, + 2y, and equating the coefficients:

Solutionis:  y(x) = e*X + 19—3 sin3x + 113 C0s3X + C1e* + Cpe*

(b) Find the solution to (*) which also satisfies the initial conditions

y(0) = 1,y(0) = 2.

y(x) = efx+%sm3x+ %c033x+clex+cge2X
y0) = £ +Ci+C=1  Ci=-3--Cs
y'(x) = ——e*"+ g COS3X — % sin3x + C1eX + 2C,e
y(O)——+C1+2C2=2 -t -cirac,-2
Wic=2 C=2-4-%
Zici+ -1 c-1-8- -4
Co = % and Ci = —%
Solution is:
y(x) = e—x+ %sm3x+ %3(:033x— %ex 163 e

Example These examples are video slide shows. Slide Example 1 Slide Example 2

You will need Real Player to view this. To get it click on Real Player.

Variation of Parameters
Let us now consider the non-homogeneous equation
a)y” +bx)y" +c(y = f(x)

where a, b, ¢, f are continuous functions in some internal 1 and a(x) = 0 Vx € |. Note we are not
assuming that a, b, and c are constants. We seek y,, a particular solution. We shall use the method of

variation of parameters.

16



If y1(x) and y,(x) are two (known) LI solutions of the homogeneous equation =

Yh = C1 Y1(X) + C2 Y2(X).

To find y, we shall replace ¢, and ¢, by unknown functions of x and seek to determine these
functions. Hence let

Yp = Vi(X)y1(X) + V2(X)y2(X)

Substitution of the above into the differential equation = only one condition for v; and v,. We may
therefore impose another condition arbitrarily but in such a manner as to simplify things.

Now
Yp = Viy1 +VaYs +Viy1 + Vo2
If we require
Vi Y1+Vs Y2 =0 (%)

then no second derivatives of vy and v, will appear iny,. We therefore make this one condition. The
other comes from the differential equation. Now (x) =

" ! ! " ! ! I
Yp = Viy1 +Viy1 +VoYa +V2Y,

Substituting into the differential equation implies

vi(ays +byy +cy1) +va(ayz +by; +cy2) +aviyy +avay; = f(x)
%/—/ \—(—/

Since the “lower bracketed” quantities are zero, this last equation =

RGN

V/ ! + V/ ! —
1Y1 T V2Y2 ax)

This is a second condition for v; and v5.
= we have found two equations to determine v;,v, namely

Viy1 +V5y, =0

and
I,/ I'y\,! f X
Viy1 +Vay; = %
These two equations can be solved for v}, v provided
y/l y/z +0
Y1 Y2

However, the above is the Wronskian of y; , y, and is never zero since y; and y, are L1I.
=
vy = —I __vaf) dx
a(x) Wlys,y]
and
vy = I—ylf(x) dx
a(x) Wlys,y]

17



Note: It is not necessary to remember these formulas. One can usually solve the two equations for v}

and v, directly and with ease. See the examples below.

The particular solution to non-homogeneous equation is

Yp = V1(X) y1(X) + Va(X) y2(X)
with v, and v, given by the above expressions.

Example
y" +y = secx
= let y; = cosxand Yy, = sinx, since these are the two LI homogeneous solutions. Then we take

Yp = V1(X) COSX + V2(X) Sinx
The two conditions given above =

|
o

V) COSX + V5 sinx =

—VSiNX 4+ V5 COSX = SECX.

Note that W[y1,Y2] = €0s?X + sin?x = 1.

Solving the first equation for v; we have
,_ VspsinX
V1 = ~~CosX
The second equation the implies

vhsin?x 3
—CosSX +V, COSX = SeCX

Or
V5[sin?x + cos?x] = 1

Hence v, = 1 and

vzzjldx:x

From the first equation we

_ _[sinX 4y —
Vi = I cosx dx = Injcosx|

There is no need to include constants of integration, since these just lead to homogeneous solutions in

Yp-

=

Yp = In|cosx|cosx + Xxsinx.

18



Hence we get finally that
Y = ¥n +Yp = C1COSX + C2SinX + In|cos x| cos X + Xsinx

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.
Example
Given that x and x* are homogeneous solutions of the equation

X2y" —4xy' +4y = x*+x2 x>0

find the general solution of this equation.
Solution
Since we have that {x*,x} is a fundamental solution set, we seek a particular solution of the form

Yp(X) = Vi(X)X + V2 (X)x*
The equations for v} and v; are
ViX+Vox4 =0

f
Vi+Avxe = 5 =x2+ 1

4
Note: The Wronskian is

‘ = 4x* —x* = 3x* = 0 for

1 4x3
The first equation yields
V) = -3
The second equation then yields
b 1x+1 11 1.1
V2T 3 T3 I
Thus
11 .11 1 1
VZ(X) = J.(gy + §X—3 dx = glnx— W
Then
Vi =—(%%+%X—13 X3 = -+ (x2+1)
And we have
Vi) = =+ [0 + D = - - 1x
Thus

Il
~—
W~

=)

>

|
m‘
X< [~

N
N
>

ESN

J’_
/l\\
©~

>

w

|
wl—

>
N—

=<

Yp(X)
_ 1 2 9g2_ 2
= 4% (=2x? =9+ 6(Inx)x?)

19



The general solution is, then,
y(X) = 1—18x2(—2x2 ~ 94 6(INX)x2) + C1x + Cox*

SNB check x2y" — 4xy’ + 4y = x* + x2, Exact solution is: C1x — X% — +x* + Cax* + £x*Inx

Example Solve the equation

et
1+1t?
Solution: p(r) = r2—2r+1 = (r—1)2 Thus r = 1 is a repeated root and

Yh = C1e! + Cotet

y'—2y' +y=3e'+

Since p'(r) = 2r — 2, then p(1) = p'(1) = 0 and a particular solution for 3e' is
Yo, = Kt2e®t _ 3t%!
B C) R

To find a particular solution for —= we use the Method of Variation of Parameters.

1412
Yp = Va(D)y1(t) + va(t)y2(t)
Herey, = etandy, = te'so
Yp = Vi(t)et + vy (t) tet
The equations for v} and v; are
viet +vitet =0

f t
viet+vh(et + tet) = = = —&
1 2( ) a 1+ t2
since a = 1. We many cancel the e' in both equations.
Vi+Vvt =0
Vi Vh(L4+t) = 2
1 2( ) 1+ tz
Then
Vi = Vit
Using this in the second equation we have
vy = —1
2 14t
and therefore
v, = tan7't
Then
t
Vi = —
! 1+t2
SO
Vp = —% In(1 +t?)
Then

20



Yp, = Vi(X)el + va(x)tet = —%etln(l +12) + tettan~t
Finally

Y=Yn+Yp +Y¥p

2t
= Ccie' + Cote' + 3tTe - %e‘ In(1 +t?) + te'tan—'t

Euler’s Equation
The differential equation

x2y" +pxy’ +ay = f(x) (1)
where p and q are constants is called Euler’s Equation (or the Cauchy-Euler Equation).

Consider the homogeneous case
x2y" +pxy' +qy =0. (2)

Once we find y, then we can find y, for (1) by variation of parameters. We consider (2) only for the
case X > 0 so that coefficient on y” does not vanish. Notice that each term contains some power of x if
we try y = x™. Hence we seek a homogeneous solution of the form

ynh = X"
and shall try to determine m so that x™ is a solution. Now
yh = mx™tand yy = m(m - 1)xm2

so that the differential equation =
X"m(m-1)+pm+q] =0 = x"[m?+m(p-1) +q] = 0.
Since x™ # 0 =

m2+m(p-1)+q=0. 3)
(3) is call the indicial equation for m. It has solutions

oo —P-DE (-1 -4q

2

Let A = (p—1)?2—4q Then we have three cases just as we had for second order equations with
constant coefficients.

Case 1. A > 0 = 2 distinct roots m;,m, =
Yh = C1X™ + CoX™M2,

Case2.A=0>

To get a second solution let y = u(x)x™, where u(x) is a function to be determined. Equation (2) =

21



xu"+u" =0.
Lettingv=u"=>xv'+v=0=

!

v _
v+X—O.

C1

The integrating factor for this equation is e-[ o e = x> %(XV) =0=xv=Cc=>Vv=-
u=[v=cilnx+c
=
Yh = X™[c1InX + c2].
Case 3. A < 0 = roots are complex conjugates, m; = a + bi and m, = a — bi.
Thus
Yh = C1X™ 4 CoX™ = C1X¥* 4 ¢px2Pi

or
Yh = X3[C1X? + cox7P1].
Now
Xl — g@ib)inx for x > 0.
=
xPh = e®Inx = cos(bInx) +isin(bInx)
=

ynh = x2[Acos(bInx) + Bsin(bInx)].

Example Solve
x2y" +7xy' +5y = 0

Here p = 7 and g = 5. The indicial equation (3) is for this example
m2+m(p-1)+q =
m?2+6m+5=(m+5)(m+1)

>m=-50r-1=

C1 Co
FaR

Yy =CiX°+cxt =
Example Solve
x2y" +3xy'+y =0
Here p = 3 and g = 1 so the indicial equation is
m2+mp-1)+q=m2+2m+1=(m+1)2
Thus m = -1 is a repeated root and the solution is
yn = Cix7 1+ coxtnx

Example Solve
x2y" +3xy' +2y =0



Here p = 3 and q = 2 so the indicial equation is
m2+mp-1)+g=m2+2m+2

2D

B 2

Thus

Thus we seta = -1 and b = 1 in the formula

yn = x3[Acos(bInx) + Bsin(bInx)].

and get
yh = X7 [Acos(Inx) + Bsin(Inx)]
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