Ma 221

Laplace Transforms - Chapter 7

Review of Improper Integrals.
Since the Laplace Transform is an improper integral we recall:

Definition. If f(x) is defined on a < x < oo, then we define j:f(x)dx by

j:f(x)dx lim j:f(x)dx

R-o0

provided this limit exists. If the limit exists, we say the improper integral converges, otherwise it diverges.

Example 1) j:o x"dx diverges forn > —1, since

® . n+l |R
I x"dx =lim X | -
1 Row N+1 11
00 -
2) jl x~"dx converges for n > 1, since
® n . R 1 . xR
I X"dx =I|mj —=dx =li 1 | 1
1 Rowo * 1 X R-o0 -n
. —n+1
=lim T -7 1 - 1

The Comparison Test for Convergence.
If0 < f(x) < g(x) on a<x< o and j:g(x)dx converges = j:f(x)dx
converges.

Laplace Transforms

Definition. Let f be defined on 0 < x < o. Then the Laplace Transform of f(x), denoted by L{f(x)} or ?(s) is
defined by

Lifoor =T = | " e-sKf(x)dx
0
provided that the integral converges for at least one value of s.

Remarks. (1) f(x) is transformed to a new function ?(s)
(2) It can be shown that if T(s) exists for s = sg it exists V' s > sg.

Example L{x}

L{x} = j: xe~S*dx



To evaluate this integral we use integration by parts. Let
Uu=Xx dv=e = v= —% €=, Then

* —SX — i _l x| R _ Oo_l —sX
joxe dx —Lli?ox( s)e 0 IO 5 €~>dx
_ 1 (%, _jim LR __1 _ 1
_0+§j0e Pox lim 3 & | = -50-1 = 5
Thus
Log = L
SZ
Example
__1
L{e*} = 5=
Remark.
L{af(x) + bgx)} = j a;{af(x) + bg(x)}e~S*dx

a Jm f(x)e=*dx + b Jm g(x)e~>*dx
0 0

= aL{f(x)} +bL{g()}
Example L{cosbx} =?

Consider e = cosbx + isinbx.
L{e™} = L{cosbx} + iL{sinbx}

Therefore we can find L{e"™}, and we take Re L{e'™} = we will get L {cosbx}.
L{eibx} —

1
s—ib

Now the real part of L{e™} = L{cosbx}. Thus
1 s+ib _ s+ib _ s i b

_ I _ +i
s—ib " s+ib s2 4+ p2 52 4+ h? 52 + b2

L{cosbx} = —S
{ ’ s2 + b2
Also

L{sinbx} = ﬁ

Use of the Laplace Transform to solve differential equations.

Example
y'-2y=e¥ y0) =1
We first solve this initial value problem by techniques taught earlier.

The integrating factor for this equation is e_J 2 gax, Multiplying by this



>d (ye?)=e™ oye = —lePicoy=-—Le ¥+ ceX
6

_ 1 _ _
y(O)—1:>—€+C—1 >Cc=7 =

__l —3x sz
y = 56 +5e.

Solution by Laplace Transforms.
Take L of both sides. Since L{e®} = <1

=

LY ~2y) = L{e™) = o3

or

Ly —2L4y) = o3

Later we shall show that
L{y'} = sL{y} - y(0).

=
sL{yy —1-2L4yy = 15
=
_oy_ 1
L{y}(s—2) er3+1
=

-1 1
LY = 57 " =269
Now using partial fractions we have

1 = +
(s=2)(s+3) s—-2  sS+3
=>A=+1andB=-1.

=
1 1 _1 6 _1
_ 5 5 _ 5 5
LLyr = s—2 "s-2Vv543 " 5-2 "5+3
. . e 1
Since L{e?} = -5 and L{e = X
=
L{yy = L{@e?} + Li-Le ™)
— ﬁ 2 _ 1 -3x
- L{ge -5
=
y = _%e%x + %ezx
as before.

Remark. If L{f(x) = F(s), we may write L"1{F(s)} = f(x).
Question: Is there more than one such f(x) for a given F(s)? Answer—No.

Theorem. If L{f(x)} = L<{g(x)} and fand g are continuous for 0 < x < oo, then f(x) = g(x).
L~ is called inverse Laplace Transform.

Definition. f(x) is of exponential order a if f(x) is continuous for 0 < x < oo and



[f(x)] < ce™ 0 <X <o
where ¢ and a are constants.

Note: The above definition says that a function of exponential order a cannot go to infinity “faster” than e#*. We
shall denote the set of all functions of exponential order « by E,, .

Theorem. If j:|f(x)|dx converges, then j: f(x)dx converges.

Theorem. If f(x) € E, then L{f(x)} exists fors > a.
Proof. L{f(x)} = | :e*SXf(x)dx:

Jm e f(x)dx < Jm e | f(x) | dx
0 0

o0
<c I e~Xe®dx
0

0 _a—(s—a)x 1
< cJ. g=(-axdy = ¢ =£ © —c fors > a
=) s—a |0 S-a

therefore I :|efsxf(x)|dx converges = j : e~Sf(x)dx also converges. = L<{f(x)} exists.
Example sinx € E;
[sinx| < ce*c > 1.
In our solution of the first order differential equation in the example above we used the fact that

L' (0} = sLLy()} —y(0).

We now prove this.

Theorem. If f(x) € E, and f'(x) is continuous, then L{f'(x)} exists for s > « and
L{f' (0} = sk} —1(0).

Proof. L{f'(x)} = j: e=f' (x)dx.

Integrate by parts = u = e dv = f'(x)dx v = f(x).

LX)} = ef(x) | 063 + sj:f(x)efsxdx =

_lim [e‘sxf(x)| | :f(x)e‘sxdx] _lim [e-Rf(R)] — f(0) + SLLFOQ}.

R—o0 R—o0

Claim limg.,, e~SRf(R) = 0 sincef € E, and s > a. Now
ek If(R)| < ce™Re™® = ce~ @R - 0
since s —a > 0. Therefore
L{F (0} = sLLf(x)} —f(0)
and L{f'} exists.

Remark. If f'(x) is continuous and f'(x) € E, we may apply the above theorem to f' and f’ =

L7 (0r = sL{F (0} —F'(0) = s[sL{f(x)} —f(0)] —'(0)
Hence
L{f"} = s2L{f(x)} —sf(0) —f'(0).
In general



LM}y = s"F(s) - s™L(0) — s™2f(0)... 1-D(0).

We want to use the Laplace Transform to solve D.E.’s. To do this we need the Transform of many functions.
Therefore we shall develop some results which allow us to find more transforms.

So far we have

L) = 527
L{1y =1
L = %

L{cosbx} = ﬁ

L{sinbx} = ﬁ
Theorem. If f(x) € E, and
Foo = | : f(t)dt,
then F(x) € E, and

L{j :f(t)dt} = LIFWy = +7(9) = L0403

Remark. Assume theorem is true. Then

L{x2) = L{Z j:tdt} - 2|_{J':tdt} - 210 - S%

Note that here F = x? and f = 2t.
Proof of Theorem. We shall first show F(x) € E,.

Fool < [ fioldt<c [ etdt = Slem—1] < Lew - Com

where £ = C.
Also L{F'(x)} = sL{F(x)} - F(0) >
L)} = sLLF(X)} — F(0) = sL{F()}
since F(0) = 0.
=

L{FX) = L{_[ :f(t)dt} ~ 15s).

Theorem. If f € E, then
L{ef(x)} = f(s+a)
where s > a — a.

Proof.



L{eaf(x)} = j“; e f(x)dx = z e~XF(x)dx = F(s + ).

Example L{e®x2} =?

_ 2
L{x%} = Py
=
L{e&x2} = 2 __
{ ’ (s+a)d
Example Find
I—l( S+4 )
s2+4s+8
Solution:
I—l( s+4 ):I’l s+4
s2+4s+8 (s+2)2+4
— g1 S+2 + 2
(s+2)2+4 (s+2)°+4
= e 2cos2t + e2sin2t
Example Find
Pl 3s+1 . __ 3 _
s24+25+10  (s+1)°
Solution:

3s+1 _ 3s+1+2-2 _ _ 36+l 2
$2425+10  s2+2s+1+9  (s+1)2+3%2 (s+1)2+32

3(s+1) _;|: 3 :|

T 5+D?2+32 3| (s+1)2132
= ;6—1(&> = 3etcos3t - %e‘tsin3t.

s2 +2s+10
e 3 _ 32 _ 3ett?
((S+1)3> 2 (s+1)3 2
= -1 8s+1 ,_ 3 = 3e'cos3t— Zetsin3t + 3%%2.

s24+425+10 (s+1)°

Remark. Consider
dfe=d I " e (x)dx = I e xf(x)]dx = L{-xf(x)}
ds ds J o 0 '

The above is O.K. if f € E,. It can be used to get many Laplace transforms.

Example L<{xcosbx}.
L{cosbx} = - so f(x) = cosbx and fs) = o

bZ
Thus



Lixeosbi =~ o5 | = Lo (s +02)229)

1, 2 _ 82 -b? 425
s2+b2 | (sZ+b2)Z  (s7+62)2

Hence

2 R
L{xcoshx} = (ssz+—bb2)2

Remark. In general if f € E,, then

LMy =170,
Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

Solutions of linear equations with constant coefficients
Consider the Initial VValue Problem
ay" +hby' +cy = g(x)
y0)=a y'(0) =75
where a, b, and c are constants. It may be shown thaty, y' and y” are of exponential order, and hence their

transforms exist. Taking L of both sides of the differential equation
=

aL{y"} +bL{y'} +cL{y} = L{f(0)}
a[s’L{y} - sy(0) —y'(0)] +b[sL{y} —y(0)] +cL{y} = L{g(x)}
as?y(s) — saa — aff + bsy —ba +cy(s) = §(s).
(as® + bs +€)9(s) — saa —ba —ap = §(s)

_g(s)+a(as+b)+ap
ye©) as? +bs+c
Therefore once we find L™ of the right hand side we will have y(x) .

Example
y'—-y'-2y=0 y(0) =1Yy'(0) =0
Ly —Ly'y —2L{y} = 0
=
s2L{y} —sy(0) —y'(0) — [sL{y} —y(0)] —2L{y} =0

$29(s) —s—sP(s) +1-29(s) =0
(s2-s5-2)9(s) =s—1



s—1
) = ———=
y(s) 7 s 7
s—1 -_A_ ,_B
(s=2)(s+1) s—-2 s+1
=
-1 -2
A= 3 and B 3
Thus
1 2
_ _3 3
y(s)_s—2+s+1
and hence
,l 2X ; —X
y(x) = 3e +3e .
Example Solve
y" +y =sin2t y0O) =0 y'(0)=1
Solution:

a Taking transforms of the equation =

Recall that L{sinat} = Tial
s29(s) - sy(0) —y'(0) + 9(s) = L{sin2t}.

__1 2
YO =gt (s2+1) (s2+4)

To find §(s) we must invert (x). Note that

RERR

Thus we need to find
-1 2
(s2+1) (s?2+4)

We present two approaches.

Approach 1: (using complex variables)
Ay Ay As

(*)

Ag (+ %)

+ — + — + -
S—1 S+ 2i s—2i

2 _ 2 _
(s2+1) (s2+4) (s+D)(s—i)(s+2i)(s—2i) S+i

wherei = J-1.

To get A1 we multiply (x *) by (s + i) and the set s = —i. This yields
-2 __1_
ey - a M

Similarly



2 -1 _
ZGhCn 3
2 =1 _
Chancan -~ 6 A
2 -1 _
@ 6
Thus
_1 1 1 _1
2 _ _3i 3i Bi Bi
(s2+1) (s2+4) S+I “s-itsya "S-
But
L_l{s}a} = gt
o)
L-1 2 = 1 ity gity 4 L pe-2it _ g2it
{(s2+1)(s2+4)} 3 I+ 5l |
= %[ cost +isint + cost +isint] + Gl[cosZt—|5|n2t—0052t—|5|n2t]
-2 _1
=3 sint 3S|n2t
Thus we have finally that
-Gt 2
Yo 241 {(32+1) 2+ 4)

sint + ;sint— lsinZt

3 3
Saint— L
3 sint 3 sin 2t

Approach 2: (without using complex variables)

2 _As+B , Cs+D _ (As+B)(s?+4)+(Cs+D)(s* +1)
(2 +1)(s% +4) s2+1  s2+4 (2 +1)(s%2 +4)

As3 +4As +Bs2+4B+Cs® +Ds?2 +Cs+D =2

A+C=0 B+D=0 4A+C= O4B+D—2ThusA——CandaIso4A_—C:>A C = 0. In addition,

B =-D and hence - 4D +D = 2. ThusB = -D = 2 5

2 _2
sint+ L? 23 + 23
sc+1 sc+4

sint+ 2 sint— 21 %}
sc+4

=

y(x)

3 3
= smt— ( )stt
= 5 sint — 1 sin2t

3 3



Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.
Example Use Laplace Transforms to solve:

y'=3y'+2y=e> y0)=1 y'0)=1

Solution:
£y =3y’ + 2y} = 2 = L4
Thus
(5%~ 35+ 2)L4y} - 5y (0) - ¥(0) + 3y(0) = L1+
(s2 - 3s+2)L{y} = 511 +s-2
_ 1 S 2
ey = (s+D)(s-1)(s-2) * (s—1)(s-2) a (s—1)(s-2)
_ -1+s2-5s
+1(G-1)(-2)
1 1 1
T BG+1) 26-1) " 36-2)
Thus

y(x) = %ex + %ezx + %e‘x

Example Let
et foro<t<?2
9(t) =
3 for2<t<w

Use the definition of the Laplace transform to find £{g(t)}.
Solution: Fors > 0

0 2 ©
L{gt)} = jo e-Stg(t)dt = jo e-Steldt + jz 3e~sidt

2 R
- j e(-S)tdt + 31im [ e-stdt
0 R o 2

_ et 2 _ 3 lima-st|R
N 1-s 0 s Il?llpoe |2
2(1-s) .
_ £ __1 _3 SR _ 25
1-5s l1-s S 'R'Il.l[e e”]
_ &MY 1 3.

1-s 1-s S
Example Solve using Laplace Transforms:

y'-3y'+4y=0 y(0)=1 y'(0)=5
Solution: Taking the Laplace transform of both sides of the DE vyields
L{y"} - 3L{y'} +4L{y} = £{0} = 0

10



so that
s2Y(s) —s(1) —5—-3[sY(s) —1] +4Y(s) =0
Solving for Y(s), we get

Y(s) = S+2
®) s?—-3s+4
s— 2 z
S+2 _ S+2 _ 2 " 2
_ 2 2
BEEDT 0 (E) (D)
J7
= s— + 47 2
J7 3N\2, (7
(s-4)"+ (T) (s-3) +(T>
Hence
> s_ 23 J7
y(t)ZI_l{ 2S+ :I—l 2 - +ﬁ£—l 2 -
T -9+ () -9+ (F)
=e%‘cos t+J_ez sm‘/_
Example

Let £{y} = Y(s)Show that
Lty'] = -Y(s) —sY'(s)
Solution: Since
£0y'] = ~L2ly ] = ~L[sY(5) - y(0)] = ~¥(5) - sY'(5)

(b i) (8 pts) Use Laplace transforms and the identity in 3. (a) to find a differential equation for £{y} = Y(s),
where y(t) is the solution of the initial value problem

y'+2ty' -4y =1 y(0) =y'(0) =0
Solution: Taking the Laplace transform of the DE implies
s2{y}y —sy(0) —y'(0) + 2£[ty'] - 4L{y}y = £[1] = +
Since
L'} = =Y(s) —sY'(s)
and the initial conditions are both equal to 0 the equation above becomes
S2Y(s) — 2Y(s) — 2sY'(s) — 4Y(s) = %

(52 -6)Y(s) — 2sY'(s) = +
Thus we have the following first order DE for Y(s)

__i -1
Y'(s) + > )Y =50

(b ii) (7 pts.) Solve the differential equation you obtained in 3 (b i) to obtain an expression for Y(s). Do not invert
your expression for Y(s) = £{y}.
Solution: This is a first order linear DE for Y(s) and has the integrating factor

11



_ @3 _ 8

o] 3-)us

Multiplying the DE for Y by this integrating factor yields

% (s3e*% Y) - _Se ¥

S0
2 2 2
B TY = —j —S e rds=e"T +cC

_1 c <
Y(S)—S—3+S—3e4

The material below is no longer covered in Ma 221.

Laplace Transforms and Special Functions

Mathematical models of mechanical or electrical systems often involve functions with discontinuities
corresponding to external forces that are turned abruptly on or off. One such simple on-off function is the unit step

function at t = a; its formula is
Oift<a
ut-a) = )
lift<a

Theorem. L{u(t-a)} = &~ fors >0, a > 0.
Proof: L{u(t—a)} = j: e-stu(t — a)dt = j: et . 1dt =lim j: e-stdt
R-o

:||m efst |R _ e

s la = s -

R-o0

Note that L{u(t)} = L{1} = L,sinceu(t) = 1fort > 0.
Example Find the Laplace transform of
-1t<3
f(t) =
® { 5t>3

We may write f(t) in terms of u(t — a) as follows:
f(t) = -1 +6u(t-3)
Hence

L{®) = L{-1} +6L{ut-3)} = -+ +6 e—sss '

Theorem (Shifting Property). Let F(s) = L{f(t)} existfors > a > 0. If a > 0, then
L{ft-a)u(t—a)} = e >F(s) = e ®LLf(t)) (1)
and if f(t) is continuous on [0,%), then
L1{e®F(s)} = f(t—a)u(t—a) 2
Example Letus put f(t) = 2t2 in the above theorem. Recalling that L{$t?} = s%

we have
_ 0 ift<a
L*l{—e as} —u(t—a)L(t—a)? =
s3 t-a)7t-a) F(t-a)?ift>a

More often one wants to compute the transform of a function expressed as g(t)u(t — a) rather than f(t — a)u(t — a).

12



To compute L{g(t)u(t — a)}, identify g(t) with f(t — a), so that f(t) = g(t + a). Equation (1) then becomes
L{gu(t-a)} =e™L{gt+a)} (3)

0ift<3
Example Find L{g(t)} ifg(t) =
p {9} ifg(® {tzift>3

Now g(t) = t?u(t — 3) so that

L) = e LAt+3)% —esL r6t+9) —e (L + &+ 3)

Example Find L{f(t)} if

cos2t if O0<t<2xm
f(t) = .
0 if t>2n
Note that
f(t) = [L—u(t—2m)] cos2t = cos2t — u(t — 2rr) cos 2t.
Hence

LD}

L{cos 2t} — L{u(t — 2r)cos2t}

= 5214 — e 2 {cos(2t + 27)}

=2 i i e=27|_{cos(2t)}  since cosine has period 27.

s(1 — e=2m)
s?+4

Example A mass that weighs 32 Ib. (mass m = 1 slug) is attached to the free end of a long light spring that is
stretched 1 ft. by a force of 4 Ib. (k = 4 Ib./ft.). The mass is initially at rest in its equilibrium position.
Beginning at time t = 0 (seconds), an external force F(t) = cos2t is applied to the mass, but at time t = 2z
this force is turned off (abruptly discontinued), and the mass is allowed to continue its motion unimpeded.
Find the resulting position function x(t) of the mass.

We need to solve the initial value problem

X" +4x = f(t); x(0) = x'(0) =0

where f(t) if given by the function in the previous example. Taking Laplace transforms of the differential equation
leads to
s(1—e?)
2+ LX)y = 2———=
(s + HLXMD)} 714
so that

S _ e727rs S
(s2+4)2 (s2 + 4)2

L{x@®F =

Now since L™t { (52i4)2 } = %tsin 2t. (Recall the formula L{(-t)"f(t)} = ?(n)(s), and use it withn = 1 and

f(t) = sin2t. It then follows from (2) above that
X(t) = %tsin 2t—u(t—27) - %(t — 2m)sin2(t - 2m)

[t—u(t—2m) - (t—27)] sin2t

ENE

This last expression may be written as

13



%sinZt ift>2n

%tsinZt ift <2r
X(t) =

We see that the mass oscillates with circular frequency o = 2 and with linearly increasing amplitude until the
force is removed at time t = 2z. Thereafter, the mass continues to oscillate with the same frequency but with
constant amplitude Z-. The force f(t) = cos2t would produce pure resonance if continued indefinitely, but we see

its effect ceases immediately when it is turned off.

Transforms of Periodic Functions

Periodic forcing terms in mechanical and electrical systems are often more complicated than pure sines or cosines.
Hence we have

Definition. A function f(t) is to be periodic of period T if
ft+T) =f(t)
V tin the domain of f.
-1 0<t<?2
Example. f(t) = << where the period of f(t) is 4.
0 2<t<4

Theorem. If f has period T and is piecewise continuous on [0, T], then

L4} = 1_1e — j;e*tf(t)dt )

Example Find the Laplace Transform of the periodic function given in the example above.
Here T = 4, so that

4 2
L) = ;i [ emtdt = Lo [ e(-Dydt

e (Dm0 (54=)

Product of Transform functions: Convolution

IAt is often desirable to have a function h(x) such that if f(x) and g(x) are two functions having Laplace transforms
f and @, then
L{h0o} = L0} L{g(0}
Example: L{x} = SAZ and L{1} = +
Hence L{1}L{x} = L . Slz = S% + L{1 +x} = L{x}. Thus we see that h = fg.
The following then gives the expression for h(x).

Theorem. Iff(x) € E, and g(x) € Eg, then the function

X
heo = [ fx =gt = 160 * g0
exists and
L{hoo} = LLF00 + 900y = T9)36)
Remarks. f x g is called the convolution of f and g. 1t may be shown that
fxg=gxf
(fxg)xh="Ffx(g=*h)

14



fx(@+h)=fxg+fxh

(cf) xg = fx(cg) = c(fx Q)
Tosee f x g = g * f note that

L{g * f} = L{g}L<f} = L{frL{g} = L{f+ g}
Since L<{h1} = L<{hy} < hy = hy for functions h; and h, which are continuous, = g xf = fx g.

Example L{l} =1 = L{1}L{l} = SAZ
1x1 =j;1-dx=xandL{x} -+
Example Find

1 s?
: {(52+4)2}

Since L‘l{ 2 }z cos ax and —— :< s ) ( = ) therefore we want h(x) such that

s?+a? (s%+4)? s2+4 s2+4

2
Lihpy — 8 ___s s
iy (s2+4)2 s?2+4) 244

L{h} = L{cos2x} L{cos2x} =
h(x) = cos2x * cos2x = IX €0s2(x — t) cos 2tdt
0

X
Io (cos2xcos 2t + sin2xsin2t) cos 2tdt

X X
CO0S 2X jo cos22tdt + sin 2x jo sin 2t cos 2tdt

X 1+ cos4t 1a i 204X
costjo (—2 )dt +5 sin2xsin<2t|

_ C0S2X [t+ sin4t ]Z n %sin?’Zx

2 4
_ X cos2xsindx , sin®2x
=5 COS2X + 5 + 7]
_ X cos?2xsin2x , sind2x _ x sin 2x
= 2cost+ 7] + 7] = 2cost+—4

Example Solve the integral equation
fx) = 1+ J'XO f(t) sin(x — tdt

The equation may be rewritten as

f(x) = 1+ f xsinx

Taking the Laplace of this equation yields
Fo)= L +Fx 2L

and hence
[t
s2+1 S
=
2 _s2+41 _ 1 1
= % =s*tg
=

15
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