
Ma 221

Series Solutions of Differential Equations

Solution by Power Series

We shall now study ways of solving the second order differential equation

a2x
d2y
dx2

 a1x
dy
dx

 a0xy  fx

This equation has variable coefficients. In any interval where a2x ≠ 0, we can divide the equation by a2x to
obtain y′′  Pxy′  Qxy  Rx. We shall consider only the homogeneous case

y′′  Pxy′  Qxy  0. 1

This equation will be solved by power series. It will turn out that near a point x  a

y  a0  a1x − a  a2x − a2   anx − an 

∑
n0



anx − an

where a0,a1,..., an,... are constants to be determined. This series is the Taylor series expansion of the solution y.
Let us first begin with two definitions.

Definition 1. A function fx is said to be analytic at x  a if it can be expanded in a power series, in powers of
x − a, which converges to fx in an open interval containing x  a. This series is the Taylor series for fx.

Note: A necessary condition for fx to be analytic is that fx and its derivatives of all orders exist at x  a.

fx analytic 

fx ∑
n0


fna

n!
x − an

This series is called the Taylor series of fx near x  a.
When the point x  a  0, the series is called MacLaurin series. If fx is not analytic at x  a, it is said to be
singular or to have a singularity at x  a.

Examples:
1. fx  1

1−x  1 − x−1 is analytic at x  0

f′x  −1 − x−2−1  1 − x2

f′′x  21  x−3 f′′′x  3.21 − x−4

fnx  n!1 − x−n−1 so that at x  0 fn0  n!
 Taylor expansion for 1

1−x near x  0 is

fx  ∑n0
 n!

n!
x − 0n ∑n0

 xn  1  x  x2     .

However, 1
1−x is not analytic at x  1, since it approaches  as x → 1.  no power series in powers of x − 1.

2. fx  x
1
n n  2,... is not analytic at x  0
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f′x  1
n x

1
n −1 n ≥ 2  1

n − 1  0  f′x at x  0 does not exist.

3. fx  1
x21

analytic for all real x. However, for x complex, x  i is a singularity.

4. What are the singularities of fx  x − 1
x3 − 2x2  x

?

fx  x − 1
xx2 − 2x  1

 x − 1
xx − 12

 1
xx − 1

 x  0 and x  1 are singularities.

Definition 2. The point x  a is called an ordinary point of the differential equation

y′′  Pxy′  Qxy  0 1

if both Px and Qx are analytic at x  a. If either Px or Qx is not analytic at x  a, then this point is called
a singular point or singularity of the differential equation 1.

Example

x2 − 3x  2y′′  x y′  x2y  0

We rewrite the equation as

y′′ 
x y′

x − 2x − 1
 x2

x − 2x − 1
y  0

Thus Px  x

x−2x−1 and Qx  x2

x−2x−1 . Thus the equation has singularities at x  2, 1, and 0. x  0 is

a singular point because the derivative of Px at 0 is not defined. All other points are ordinary points.

The theorem below gives conditions which insure the existence of a power series solution.

Theorem. If x  a is an ordinary point of the differential equation 1, then ∃ two linearly independent
power-series solutions of the form

y ∑
n0



anx − an

These solutions will be valid in some interval containing x  a.

Method of Solution near an ordinary point.

Example Consider the differential equation

y′′  xy′  2y  0.

Here Px  x and Qx  2. They are both analytic ∀ x, and in particular at x  0. Hence by the above theorem
∃ two solutions of form
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y ∑
n0



anxn.

(Here a  0 The coefficients an are determined from the differential equation as follows.
Now

y′ ∑
n1



annxn−1

and

y′′ ∑
n2



annn − 1xn−2

.
The differential equation 

∑
n2



annn − 1xn−2  x ∑
n1



annxn−1  2 ∑
n0



anxn  0.

or

2a0  ∑
n2



annn − 1xn−2 ∑
n1



ann  2 xn  0. ∗

We shall combine the coefficients of like powers of x in ∗ to get one power series. To do this we must put each
term in the equation in the same form. This is accomplished by “shifting” the second series in ∗.

If we let n  k − 2 in the second series, ∗ becomes

2a0 ∑
n2



annn − 1xn−2 ∑
k3



ak−2kxk−2  0.

Since n and k are “dummy” place keepers, we may replace them by m. Doing this yields

2a0  2  1  a2 ∑
m3



ammm − 1  am−2mxm−2  0.

Remark. If∑0
 anx − an  0 ∀ x in some interval  an  0 for n  0,1,2,...

Thus we have from the above equation

1. 2a2  a0  0 or a2  −a0

2. m  3  3  2a3  3a1  0 or 2a3  −a1  a3  − 1
2

a1

3. m  4  4  3a4  4a2  0 or a4  − 1
3

a2   1
3

a0

4.  mm − 1am  mam−2  0 or am  − 1
m − 1

am−2 for m ≥ 3.

The expression in 4 is called the recurrence relation. Continuing we have for m  5 and m  6
a5  − 1

4
a3  − 1

4
− 1

2
a1  1

42 a1 and a6  − 1
5 a4  − 1

5 
1
3

a0  − 1
53 a0

Hence the solution is

y  a0  a1  a2x2   a01 − x2  1
3

x4 − 1
5  3

x6   a1x − 1
2

x3  1
4  2

x5 −.

It can be shown that in general
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y  a0∑
n0



−1n 1
3  5   2n − 1

x2n  a1∑
n1


−1n−1x2n−1

2  4   2n − 2

The above is the general solution of differential equation with two arbitrary constants a0 and a1.
Question: Where is the series solution valid? We shall use the ratio test to determine where the series converges.
Recall that if limn→

bnk

bn
 L and L  1 ∑bn converges.

Recall that we have am  − 1
m−1 am−2 .

 lim
m→

am2xm2

amxm  lim
m→

− 1
m1

amx2

am
 lim

m→
1

m  1
x2  0

 the series converges ∀ x.

In general we have the following result about the convergence of a series solution.

Theorem. If x  a is an ordinary point for the differential equation

y′′  Pxy′  Qxy  0,

then ∃ 2 L.I. series solutions of the form

yx ∑
0



anx − an.

These series converge at least ∀ values of x such that ∣ x − a ∣ R, where R is the distance from the point x  a
to the nearest singular point of the D.E. in the complex plane.

Remark. The distance between z1  a1  b1i and z2  a2  b2i is ∣ z1 − z2 ∣ a1 − a22  b1 − b22
1
2 .

Example x2 − 3x  2y′′  x y′  x2y  0


y′′ 
x

x − 2x − 1
y′  x2

x − 2x − 1
y  0

x  2, 1 are singular points. Also x  0 is a singular point due to the x . ∃ a solution of form

y ∑ anx − 10n

about 10. By the theorem this converges ∀x such that ∣ x − 10 ∣ R. Since x  2 is the nearest singularity to
x  10, R ∣ 10 − 2 ∣ 8.

Example Find the general solution near x  0 of

y′′  xy  0.

y  ∑0
 anxn y′  ∑0

 nanxn−1 ∑1
 nanxn−1 and y′′  ∑1

 nn − 1anxn−2  ∑2
 nn − 1anxn−2.

The differential equation 

∑
2



annn − 1xn−2 ∑
0



anxn1  0.

We must line up like powers of x. To do this both series must be of the same form. Consider

∑
2



annn − 1xn−2  ∑
k−1



k  3k  2ak3xk1
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where we have let n − 2  k  1  n  k  3 or k  n − 3. When n  2  k  −1. The D.E. may now be written
as

∑
k−1



k  3k  2ak3xk1 ∑
0



anxn1  0

Replacing the "dummy" variables k and n by m, we have


21a2 ∑
0



m  3m  2am3  amxm1  0

 a2  0 and

am3 
−am

m  3m  2
k  0,1,2, . . .

m  0  a3 
−a0

3  2
 −a0

6

m  1  a4 
−a1
4  3

 −a1
12

m  2  a5 
−a2
5  4

 0

m  3  a6 
−a3

6  5
 a0

30  6
 a0

180

m  4  a7 
−a4
7  6

 a1
7  6  12

m  5  a8  0

m  6  a9 
−a6

9  8
 −a0

9  8180
etc.
Hence

y ∑
k0



akxk  a01 − 1
6

x3  1
560

x6 − 1
72  180

x9   a1x − 1
12

x4  1
7  6  12

x7 .

Example Find the power series solution to

y′′ − xy′  y  0

near x  0. Be sure to give the recurrence relation. Indicate the two linearly independent solutions and give
the first four nonzero terms the solution.

Solution:
Let

y ∑
n0



anxn. y′ ∑
n1



nanxn−1, y′′ ∑
n2



nn − 1anxn−2.

Plugging in gives

∑
n2



nn − 1anxn−2 − x∑
n1



nanxn−1 ∑
n0



anxn  0.



∑
n2



nn − 1anxn−2 −∑
n1



nanxn ∑
n0



anxn  0.

Let k  n − 2 and n  k  2
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

∑
k0



k  2k  1ak2xk −∑
n1



nanxn ∑
n0



anxn  0. .

Replacing the "dummy" variabled k and n by m leads to


21a2  a0  32a3x ∑
m2



m  2m  1am2 − m − 1am xm  0.



a2  − a0

2
, a3  0

and the Recurrence relation is:

am2 
amm − 1

m  1m  2
, m  2,3,…

k  2 : a4 
a2

34
 − a0

24
. k  3 : a5  0.



y  a0 1 − x2

2
− x4

24
  a1x.

Example Find the first 5 nonzero terms of the power series solution about x  0 for the DE:

4 − x2 y ′  y  0

Be sure to give the recurrence relation.
Solution:

y ∑
n0



anxn

y
′ ∑

n1



nanxn−1

The DE implies

4 − x2 ∑
n1



nanxn−1 ∑
n0



anxn  0

or

4∑
n1



nanxn−1 −∑
n1



nanxn1 ∑
n0



anxn  0

Let n − 1  k in the first sum, that is n  k  1 and let j  n  1 in the second sum, that is n  j − 1 Then we have

4∑
k0



k  1ak1xk −∑
j2



j − 1aj−1xj ∑
n0



anxn  0

Since k, j,n are "dummy" place keepers we may replace them by m to get

4∑
m0



m  1am1xm −∑
m2



m − 1am−1xm ∑
m0



amxm  0

6



4a1  a0  8a2  a1 x ∑
m2



4m  1am1 − m − 1am−1  am xm  0

This implies that

a1  − 1
4

a0

a2  − 1
8

a1  1
32

a0

and the recurrence relation

am1 
m − 1am−1 − am

4m  1
m  2,3,…

Therefore letting m  2

a3 
a1 − a2

43

− 1

4
− 1

32

12
a0  − 3

128
a0

Letting m  3

a4 
2a2 − a3

44


1
16

 3
128

16
a0  11

2048
a0

Thus

y ∑
n0



anxn  a0 1 − 1
4

x  1
32

x2 − 3
128

x3  11
2048

x4 

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

The material below is not covered in Ma 221 anymore.
Solution Near a Singular Point
Consider now the case where we seek the solution of

y′′  Pxy′  Qxy  0 1

near a singular point of either P or Q , i.e. a point where either P or Q are not analytic. We shall use the Method of
Frobinius. We cannot treat all singularities. We begin with a definition.

Definition. A point x  a is said to be a regular singular point or a regular singularity of the D.E. (1) if

1. x  a is a singular point of (1); and
2. x − aPx and x − a2Qx are analytic at x  a .
Remark. Condition 2  x − aPx and x − a2Qx have Taylor series at x  a . If x  a is a singular point
which is not regular, it is called an irregular singular point.
Ex. (1) x2y′′  pxy′  qy  0 Euler’s equation. This may be rewritten as

y′′  p
x y′  q

x2 y  0

x  0 is a regular singular point since xPx  x p
x  p and x2Qx  x2 q

x2  q

(2) y′′  2
x y′  3

xx−13 y  0

It is clear that x  0 and x  1 are singular points. We must examine each singularity separately to see if it is
regular or irregular. Consider x  0 first. Now xPx  2 which is analytic near x  0. also
x2Qx  3x

x−13 which is also analytic near x  0. Therefore x  0 is a

regular singular point.
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Now consider x  1. Then a  1 and

x − 1 Px  2x−1
x which is analytic at x  1

x − 12Qx  3
xx−1 which is not analytic at x  1

 x  1 is an irregular singular point.
Near a regular singular point we have
Theorem. At a regular singular point x  a of the differential equation

y′′  Pxy′  Qxy  0
there is at least one solution which possesses an expansion of the form
y  x − a∑n0

 anx − an.

In order to see how one solves equation (1) near a regular singular point x  a in the easiest manner we shall
assume a  0. If a ≠ 0, then let t  x − a in the D.E. and solve in terms of t. t  0 is then a regular singular point.
Now y  x∑0

 anxn  ∑0
 anxn  y′  ∑0

 n   anxn−1

and y′′ ∑0
n  n   − 1anxn−2

Now xPx and x2Qx are analytic at x  0  that
xPx  ∑0

 pnxn and x2Qx  ∑0
 qnxn

The D.E. y′′  Pxy′  Qxy  0 may be multiplied by x2 to get
x2y′′  x2Pxy′  x2Qxy  0
 x2 − 1a0x−2   1a1x−1    

xp0  p1x . . .a0x−1    1a1x    
q0  q1x . . .a0x  a1x1 . . .  0

  − 1a0x    1a1
1    

p0a0x p1x1a0  p0  1a1x1    
q0a0x  q0a1x1  q1a0x1      0

Setting the coefficients of x equal to 0   − 1a0  p0a0  q0a0  0
  − 1  p0  q0  0 or

2  p0 − 1  q0  0 2
Equation 2 is called the indicial equation. This result is not surprising in light of the results we got for Euler’s
equation. Therefore if  is a root of (2)  y  ∑ anxn is a solution of (1) for this . The an

′ s are determined
from the D.E.
Remarks: Since xPx  ∑pnxn and x2Qx  ∑qnxn, p0 and qo are the first terms in the Taylor expansions
of xPx and x2Qx. Thus
p0  limx→0xPx and q0  limx→0x2Px
Ex. Find a series solution of the D.E.
9x2 y′′  x  2y  0 near x  0

We rewrite the equation as y′′  x2

9x2 y  0

Px  0 Qx  x2

9x2 so x  0 is regular singular point.

xPx  0  ∑pnxn so pn  0  p0  0

x2Qx  x2
9
 2

9
 x

9
 ∑qnxn  q0  limx→0

2
9
 x

9
 2

9

Therefore equation (2) for  becomes
2 −   2

9
 0 or  − 2

3
 − 1

3
  0 and therefore   2

3
or   1

3
.

 solutions of the form y  x
1
3 ∑0

 anxn and y  x
2
3 ∑0

 bnxn.

Consider the case   1
3

Since y  ∑0
 anxn 1

3

y′  ∑0
n  1

3
anxn− 2

3 and y′′  ∑0
n  1

3
n − 2

3
anxn− 5

3

D.E. 9x2 y′′  x  2y  0 
9∑0

 n  1
3
 n − 2

3
 anxn 1

3  x∑0
 anxn 1

3 2∑0
 anxn 1

3  0
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or ∑0
 9n  1

3
n − 2

3
an  2an xn 1

3 ∑0
 anxn 4

3  0

 ∑0
3n  13n − 2  2anxn 1

3 ∑k1
 ak−1xk 1

3  0

Let k  1
3
 n  4

3
 k  n  1 

∑0
9n2 − 3n − 2  2anxn 1

3 ∑k1
 ak−1xk 1

3  0.

Or ∑1
3m3m − 1am  am−1 xm 1

3  0  am  −am−1

3m3m−1

m  1  a1  a0

32 m  2  a2  − a1

65   a0

6532  a0

2356

m  3  a3  − a0

235689

Therefore one solution is y1  aox
1
3 1 − x

32  x2

2356 −
x3

235689    

For   2
3

one gets

y2  box
2
3  1 − x

34  x2

3467 −
x3

3467910
    

For the method of Frobinius we have
Theorem. If the differential equation

y′′  Pxy′  Qxy  0
has a regular singularity at x  0 and if the roots 1 and 2 of the indicial equation are distinct and do not differ
by an integer, then there are two linearly independent solutions of the form
y1x  x1 ∑0

 anxn y2x  x1 ∑0
 bnxn
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