
Ma 221

Series Solutions of Differential Equations

Solution by Power Series

We shall now study ways of solving the second order differential equation

a2x
d2y
dx2

 a1x
dy
dx

 a0xy  fx

This equation has variable coefficients. In any interval where a2x ≠ 0, we can divide the equation by a2x to
obtain y′′  Pxy′  Qxy  Rx. We shall consider only the homogeneous case

y′′  Pxy′  Qxy  0. 1

This equation will be solved by power series. It will turn out that near a point x  a

y  a0  a1x − a  a2x − a2   anx − an 

∑
n0



anx − an

where a0,a1,..., an,... are constants to be determined. This series is the Taylor series expansion of the solution y.
Let us first begin with two definitions.

Definition 1. A function fx is said to be analytic at x  a if it can be expanded in a power series, in powers of
x − a, which converges to fx in an open interval containing x  a. This series is the Taylor series for fx.

Note: A necessary condition for fx to be analytic is that fx and its derivatives of all orders exist at x  a.

fx analytic 

fx ∑
n0


fna

n!
x − an

This series is called the Taylor series of fx near x  a.
When the point x  a  0, the series is called MacLaurin series. If fx is not analytic at x  a, it is said to be
singular or to have a singularity at x  a.

Examples:
1. fx  1

1−x  1 − x−1 is analytic at x  0

f′x  −1 − x−2−1  1 − x2

f′′x  21  x−3 f′′′x  3.21 − x−4

fnx  n!1 − x−n−1 so that at x  0 fn0  n!
 Taylor expansion for 1

1−x near x  0 is

fx  ∑n0
 n!

n!
x − 0n ∑n0

 xn  1  x  x2     .

However, 1
1−x is not analytic at x  1, since it approaches  as x → 1.  no power series in powers of x − 1.

2. fx  x
1
n n  2,... is not analytic at x  0
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f′x  1
n x

1
n −1 n ≥ 2  1

n − 1  0  f′x at x  0 does not exist.

3. fx  1
x21

analytic for all real x. However, for x complex, x  i is a singularity.

4. What are the singularities of fx  x − 1
x3 − 2x2  x

?

fx  x − 1
xx2 − 2x  1

 x − 1
xx − 12

 1
xx − 1

 x  0 and x  1 are singularities.

Definition 2. The point x  a is called an ordinary point of the differential equation

y′′  Pxy′  Qxy  0 1

if both Px and Qx are analytic at x  a. If either Px or Qx is not analytic at x  a, then this point is called
a singular point or singularity of the differential equation 1.

Example

x2 − 3x  2y′′  x y′  x2y  0

We rewrite the equation as

y′′ 
x y′

x − 2x − 1
 x2

x − 2x − 1
y  0

Thus Px  x

x−2x−1 and Qx  x2

x−2x−1 . Thus the equation has singularities at x  2, 1, and 0. x  0 is

a singular point because the derivative of Px at 0 is not defined. All other points are ordinary points.

The theorem below gives conditions which insure the existence of a power series solution.

Theorem. If x  a is an ordinary point of the differential equation 1, then ∃ two linearly independent
power-series solutions of the form

y ∑
n0



anx − an

These solutions will be valid in some interval containing x  a.

Method of Solution near an ordinary point.

Example Consider the differential equation

y′′  xy′  2y  0.

Here Px  x and Qx  2. They are both analytic ∀ x, and in particular at x  0. Hence by the above theorem
∃ two solutions of form
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y ∑
n0



anxn.

(Here a  0 The coefficients an are determined from the differential equation as follows.
Now

y′ ∑
n1



annxn−1

and

y′′ ∑
n2



annn − 1xn−2

.
The differential equation 

∑
n2



annn − 1xn−2  x ∑
n1



annxn−1  2 ∑
n0



anxn  0.

or

2a0  ∑
n2



annn − 1xn−2 ∑
n1



ann  2 xn  0. ∗

We shall combine the coefficients of like powers of x in ∗ to get one power series. To do this we must put each
term in the equation in the same form. This is accomplished by “shifting” the second series in ∗.

If we let n  k − 2 in the second series, ∗ becomes

2a0 ∑
n2



annn − 1xn−2 ∑
k3



ak−2kxk−2  0.

Since n and k are “dummy” place keepers, we may replace them by m. Doing this yields

2a0  2  1  a2 ∑
m3



ammm − 1  am−2mxm−2  0.

Remark. If∑0
 anx − an  0 ∀ x in some interval  an  0 for n  0,1,2,...

Thus we have from the above equation

1. 2a2  a0  0 or a2  −a0

2. m  3  3  2a3  3a1  0 or 2a3  −a1  a3  − 1
2

a1

3. m  4  4  3a4  4a2  0 or a4  − 1
3

a2   1
3

a0

4.  mm − 1am  mam−2  0 or am  − 1
m − 1

am−2 for m ≥ 3.

The expression in 4 is called the recurrence relation. Continuing we have for m  5 and m  6
a5  − 1

4
a3  − 1

4
− 1

2
a1  1

42 a1 and a6  − 1
5 a4  − 1

5 
1
3

a0  − 1
53 a0

Hence the solution is

y  a0  a1  a2x2   a01 − x2  1
3

x4 − 1
5  3

x6   a1x − 1
2

x3  1
4  2

x5 −.

It can be shown that in general
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y  a0∑
n0



−1n 1
3  5   2n − 1

x2n  a1∑
n1


−1n−1x2n−1

2  4   2n − 2

The above is the general solution of differential equation with two arbitrary constants a0 and a1.
Question: Where is the series solution valid? We shall use the ratio test to determine where the series converges.
Recall that if limn→

bnk

bn
 L and L  1 ∑bn converges.

Recall that we have am  − 1
m−1 am−2 .

 lim
m→

am2xm2

amxm  lim
m→

− 1
m1

amx2

am
 lim

m→
1

m  1
x2  0

 the series converges ∀ x.

In general we have the following result about the convergence of a series solution.

Theorem. If x  a is an ordinary point for the differential equation

y′′  Pxy′  Qxy  0,

then ∃ 2 L.I. series solutions of the form

yx ∑
0



anx − an.

These series converge at least ∀ values of x such that ∣ x − a ∣ R, where R is the distance from the point x  a
to the nearest singular point of the D.E. in the complex plane.

Remark. The distance between z1  a1  b1i and z2  a2  b2i is ∣ z1 − z2 ∣ a1 − a22  b1 − b22
1
2 .

Example x2 − 3x  2y′′  x y′  x2y  0


y′′ 
x

x − 2x − 1
y′  x2

x − 2x − 1
y  0

x  2, 1 are singular points. Also x  0 is a singular point due to the x . ∃ a solution of form

y ∑ anx − 10n

about 10. By the theorem this converges ∀x such that ∣ x − 10 ∣ R. Since x  2 is the nearest singularity to
x  10, R ∣ 10 − 2 ∣ 8.

Example Find the general solution near x  0 of

y′′  xy  0.

y  ∑0
 anxn y′  ∑0

 nanxn−1 ∑1
 nanxn−1 and y′′  ∑1

 nn − 1anxn−2  ∑2
 nn − 1anxn−2.

The differential equation 

∑
2



annn − 1xn−2 ∑
0



anxn1  0.

We must line up like powers of x. To do this both series must be of the same form. Consider

∑
2



annn − 1xn−2  ∑
k−1



k  3k  2ak3xk1
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where we have let n − 2  k  1  n  k  3 or k  n − 3. When n  2  k  −1. The D.E. may now be written
as

∑
k−1



k  3k  2ak3xk1 ∑
0



anxn1  0

Replacing the "dummy" variables k and n by m, we have


21a2 ∑
0



m  3m  2am3  amxm1  0

 a2  0 and

am3 
−am

m  3m  2
k  0,1,2, . . .

m  0  a3 
−a0

3  2
 −a0

6

m  1  a4 
−a1
4  3

 −a1
12

m  2  a5 
−a2
5  4

 0

m  3  a6 
−a3

6  5
 a0

30  6
 a0

180

m  4  a7 
−a4
7  6

 a1
7  6  12

m  5  a8  0

m  6  a9 
−a6

9  8
 −a0

9  8180
etc.
Hence

y ∑
k0



akxk  a01 − 1
6

x3  1
560

x6 − 1
72  180

x9   a1x − 1
12

x4  1
7  6  12

x7 .

Example Find the power series solution to

y′′ − xy′  y  0

near x  0. Be sure to give the recurrence relation. Indicate the two linearly independent solutions and give
the first four nonzero terms the solution.

Solution:
Let

y ∑
n0



anxn. y′ ∑
n1



nanxn−1, y′′ ∑
n2



nn − 1anxn−2.

Plugging in gives

∑
n2



nn − 1anxn−2 − x∑
n1



nanxn−1 ∑
n0



anxn  0.



∑
n2



nn − 1anxn−2 −∑
n1



nanxn ∑
n0



anxn  0.

Let k  n − 2 and n  k  2
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∑
k0



k  2k  1ak2xk −∑
n1



nanxn ∑
n0



anxn  0. .

Replacing the "dummy" variabled k and n by m leads to


21a2  a0  32a3x ∑
m2



m  2m  1am2 − m − 1am xm  0.



a2  − a0

2
, a3  0

and the Recurrence relation is:

am2 
amm − 1

m  1m  2
, m  2,3,…

k  2 : a4 
a2

34
 − a0

24
. k  3 : a5  0.



y  a0 1 − x2

2
− x4

24
  a1x.

Example Find the first 5 nonzero terms of the power series solution about x  0 for the DE:

4 − x2 y ′  y  0

Be sure to give the recurrence relation.
Solution:

y ∑
n0



anxn

y
′ ∑

n1



nanxn−1

The DE implies

4 − x2 ∑
n1



nanxn−1 ∑
n0



anxn  0

or

4∑
n1



nanxn−1 −∑
n1



nanxn1 ∑
n0



anxn  0

Let n − 1  k in the first sum, that is n  k  1 and let j  n  1 in the second sum, that is n  j − 1 Then we have

4∑
k0



k  1ak1xk −∑
j2



j − 1aj−1xj ∑
n0



anxn  0

Since k, j,n are "dummy" place keepers we may replace them by m to get

4∑
m0



m  1am1xm −∑
m2



m − 1am−1xm ∑
m0



amxm  0
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4a1  a0  8a2  a1 x ∑
m2



4m  1am1 − m − 1am−1  am xm  0

This implies that

a1  − 1
4

a0

a2  − 1
8

a1  1
32

a0

and the recurrence relation

am1 
m − 1am−1 − am

4m  1
m  2,3,…

Therefore letting m  2

a3 
a1 − a2

43

− 1

4
− 1

32

12
a0  − 3

128
a0

Letting m  3

a4 
2a2 − a3

44


1
16

 3
128

16
a0  11

2048
a0

Thus

y ∑
n0



anxn  a0 1 − 1
4

x  1
32

x2 − 3
128

x3  11
2048

x4 

Example This example is a video slide show. Slide Example

You will need Real Player to view this. To get it click on Real Player.

The material below is not covered in Ma 221 anymore.
Solution Near a Singular Point
Consider now the case where we seek the solution of

y′′  Pxy′  Qxy  0 1

near a singular point of either P or Q , i.e. a point where either P or Q are not analytic. We shall use the Method of
Frobinius. We cannot treat all singularities. We begin with a definition.

Definition. A point x  a is said to be a regular singular point or a regular singularity of the D.E. (1) if

1. x  a is a singular point of (1); and
2. x − aPx and x − a2Qx are analytic at x  a .
Remark. Condition 2  x − aPx and x − a2Qx have Taylor series at x  a . If x  a is a singular point
which is not regular, it is called an irregular singular point.
Ex. (1) x2y′′  pxy′  qy  0 Euler’s equation. This may be rewritten as

y′′  p
x y′  q

x2 y  0

x  0 is a regular singular point since xPx  x p
x  p and x2Qx  x2 q

x2  q

(2) y′′  2
x y′  3

xx−13 y  0

It is clear that x  0 and x  1 are singular points. We must examine each singularity separately to see if it is
regular or irregular. Consider x  0 first. Now xPx  2 which is analytic near x  0. also
x2Qx  3x

x−13 which is also analytic near x  0. Therefore x  0 is a

regular singular point.
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Now consider x  1. Then a  1 and

x − 1 Px  2x−1
x which is analytic at x  1

x − 12Qx  3
xx−1 which is not analytic at x  1

 x  1 is an irregular singular point.
Near a regular singular point we have
Theorem. At a regular singular point x  a of the differential equation

y′′  Pxy′  Qxy  0
there is at least one solution which possesses an expansion of the form
y  x − a∑n0

 anx − an.

In order to see how one solves equation (1) near a regular singular point x  a in the easiest manner we shall
assume a  0. If a ≠ 0, then let t  x − a in the D.E. and solve in terms of t. t  0 is then a regular singular point.
Now y  x∑0

 anxn  ∑0
 anxn  y′  ∑0

 n   anxn−1

and y′′ ∑0
n  n   − 1anxn−2

Now xPx and x2Qx are analytic at x  0  that
xPx  ∑0

 pnxn and x2Qx  ∑0
 qnxn

The D.E. y′′  Pxy′  Qxy  0 may be multiplied by x2 to get
x2y′′  x2Pxy′  x2Qxy  0
 x2 − 1a0x−2   1a1x−1    

xp0  p1x . . .a0x−1    1a1x    
q0  q1x . . .a0x  a1x1 . . .  0

  − 1a0x    1a1
1    

p0a0x p1x1a0  p0  1a1x1    
q0a0x  q0a1x1  q1a0x1      0

Setting the coefficients of x equal to 0   − 1a0  p0a0  q0a0  0
  − 1  p0  q0  0 or

2  p0 − 1  q0  0 2
Equation 2 is called the indicial equation. This result is not surprising in light of the results we got for Euler’s
equation. Therefore if  is a root of (2)  y  ∑ anxn is a solution of (1) for this . The an

′ s are determined
from the D.E.
Remarks: Since xPx  ∑pnxn and x2Qx  ∑qnxn, p0 and qo are the first terms in the Taylor expansions
of xPx and x2Qx. Thus
p0  limx→0xPx and q0  limx→0x2Px
Ex. Find a series solution of the D.E.
9x2 y′′  x  2y  0 near x  0

We rewrite the equation as y′′  x2

9x2 y  0

Px  0 Qx  x2

9x2 so x  0 is regular singular point.

xPx  0  ∑pnxn so pn  0  p0  0

x2Qx  x2
9
 2

9
 x

9
 ∑qnxn  q0  limx→0

2
9
 x

9
 2

9

Therefore equation (2) for  becomes
2 −   2

9
 0 or  − 2

3
 − 1

3
  0 and therefore   2

3
or   1

3
.

 solutions of the form y  x
1
3 ∑0

 anxn and y  x
2
3 ∑0

 bnxn.

Consider the case   1
3

Since y  ∑0
 anxn 1

3

y′  ∑0
n  1

3
anxn− 2

3 and y′′  ∑0
n  1

3
n − 2

3
anxn− 5

3

D.E. 9x2 y′′  x  2y  0 
9∑0

 n  1
3
 n − 2

3
 anxn 1

3  x∑0
 anxn 1

3 2∑0
 anxn 1

3  0
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or ∑0
 9n  1

3
n − 2

3
an  2an xn 1

3 ∑0
 anxn 4

3  0

 ∑0
3n  13n − 2  2anxn 1

3 ∑k1
 ak−1xk 1

3  0

Let k  1
3
 n  4

3
 k  n  1 

∑0
9n2 − 3n − 2  2anxn 1

3 ∑k1
 ak−1xk 1

3  0.

Or ∑1
3m3m − 1am  am−1 xm 1

3  0  am  −am−1

3m3m−1

m  1  a1  a0

32 m  2  a2  − a1

65   a0

6532  a0

2356

m  3  a3  − a0

235689

Therefore one solution is y1  aox
1
3 1 − x

32  x2

2356 −
x3

235689    

For   2
3

one gets

y2  box
2
3  1 − x

34  x2

3467 −
x3

3467910
    

For the method of Frobinius we have
Theorem. If the differential equation

y′′  Pxy′  Qxy  0
has a regular singularity at x  0 and if the roots 1 and 2 of the indicial equation are distinct and do not differ
by an integer, then there are two linearly independent solutions of the form
y1x  x1 ∑0

 anxn y2x  x1 ∑0
 bnxn
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