Name:		Lecturer	
Lecture Section: _			
Ma 221		Exam IA	15S
shown to obtain f		e, or computer while taking this exa not be given for work not reasonably	
Score on Problem	#1		
	#2		
	#3		
	#4		
Total Score			
I pledge my System.	honor that I ha	eve abided by the Stevens	Honor

Lecturer _____

Lecture Section: _____

1 [20 pts.] Solve the initial value problem

$$\frac{dy}{dx} = \frac{2y}{x} + x^2 \cos x \qquad y(\pi) = 2\pi^2.$$

$$y(\pi)=2\pi^2.$$

Name:	Lecturer
i variic.	Lecturer

Lecture Section: _____

2 [20 pts.] Solve the initial value problem

$$2xy^3dx - (1 - x^2)dy = 0 y(0) = 1.$$

.

Name:	

Lecturer _____

Lecture Section: _____

3 [35 **points**] Consider the differential equation

$$(3x^2y)dx + (3x^3 + 3)dy = 0$$

a. Show that the differential equation is not exact.

b. Find a value of n, such that multplying the equation by y^n results in an exact differential equation.

c. The differential equation

$$(3x^2y^2 + 2x)dx + (2x^3y + 3y^2)dy = 0$$

is exact. Find a solution.

Name:

Lecturer _____

Lecture Section: _____

$$\frac{dy}{dt} + 2y = y^2$$

Jame:	Lecturer
-------	----------

Lecture Section: _____

Table of Integrals

$$\int \sec^{2}t dt = \tan t + C$$

$$\int \frac{\sec^{2}t}{\tan t} dt = \ln(\tan t) + C$$

$$\int \tan t dt = \ln(\sec t) + C$$

$$\int te^{at} dt = \frac{1}{a^{2}} e^{at} (at - 1) + C$$

$$\int t^{2} e^{at} dt = \frac{1}{a^{3}} e^{at} (a^{2}t^{2} - 2at + 2) + C$$

$$\int \cos^{2}t dt = \frac{1}{2}t + \frac{1}{4}\sin 2t + C$$

$$\int \cos^{3}t dt = \frac{1}{3}\cos^{2}t \sin t + \frac{2}{3}\sin t + C$$

$$\int \sin^{2}t dt = \frac{1}{2}t - \frac{1}{4}\pi - \frac{1}{4}\sin 2t + C$$

$$\int \sin^{3}t dt = \frac{1}{12}\cos 3t - \frac{3}{4}\cos t + C$$

$$\int t \cos t dt = \cos t + t \sin t + C$$

$$\int t^{2} \cos t dt = t^{2} \sin t - 2\sin t + 2t \cos t + C$$

$$\int t^{3} \cos t = 3t^{2} \cos t - 6\cos t + t^{3} \sin t - 6t \sin t + C$$