Name:	Lecturer	
Lecture Section: _		
Ma 221	Exam IB	15S
shown to obtain i	calculator, cell phone, or computer while taking this exam. All well credit. Credit will not be given for work not reasonably support to sign the pledge.	
Score on Problem	‡ 1	
	2	
	23	
	4	
Total Score		
I pledge my System.	nonor that I have abided by the Stevens Hono	r

Name:	
i tuille.	

Lecturer _____

Lecture Section: _____

1 [20 pts.] Solve the initial value problem

$$\frac{dy}{dx} = \frac{3y}{x} + x^3 \cos x \qquad y(\pi) = 2\pi^3.$$

$$y(\pi)=2\pi^3.$$

Name:	Lecturer
ranc.	Lecturer

Lecture Section: _____

2 [20 pts.] Solve the initial value problem

$$2x^3ydy - (1 - y^2)dx = 0$$
 $y(1) = 0$.

.

Name:	

Lecturer _____

Lecture Section: _____

3 [35 **points**] Consider the differential equation

$$(3y^3 + 3)dx + (3xy^2)dy = 0$$

a. Show that the differential equation is not exact.

b. Find a value of n, such that multplying the equation by x^n results in an exact differential equation.

c. The differential equation

$$(2xy^3 + 3x^2)dx + (3x^2y^2 + 2y)dy = 0$$

is exact. Find a solution.

Lecturer _____

Lecture Section: _____

$$\frac{dy}{dt} + 3y = y^3$$

Name:	Lecturer	
-------	----------	--

Lecture Section:

Table of Integrals

$$\int \sec^{2}t dt = \tan t + C$$

$$\int \frac{\sec^{2}t}{\tan t} dt = \ln(\tan t) + C$$

$$\int \tan t dt = \ln(\sec t) + C$$

$$\int te^{at} dt = \frac{1}{a^{2}} e^{at} (at - 1) + C$$

$$\int t^{2} e^{at} dt = \frac{1}{a^{3}} e^{at} (a^{2}t^{2} - 2at + 2) + C$$

$$\int \cos^{2}t dt = \frac{1}{2}t + \frac{1}{4}\sin 2t + C$$

$$\int \cos^{3}t dt = \frac{1}{3}\cos^{2}t \sin t + \frac{2}{3}\sin t + C$$

$$\int \sin^{2}t dt = \frac{1}{2}t - \frac{1}{4}\pi - \frac{1}{4}\sin 2t + C$$

$$\int \sin^{3}t dt = \frac{1}{12}\cos 3t - \frac{3}{4}\cos t + C$$

$$\int t\cos t dt = \cos t + t\sin t + C$$

$$\int t^{2}\cos t dt = t^{2}\sin t - 2\sin t + 2t\cos t + C$$

$$\int t^{3}\cos t dt = 3t^{2}\cos t - 6\cos t + t^{3}\sin t - 6t\sin t + C$$