1a (10 pts.)

$$f(t) = \begin{cases} 0 & \text{if } 0 \le t < 2\\ e^{3t} & \text{if } 2 \le t \end{cases}$$

Use the definition of the Laplace transform to determine the Laplace transform of f(t). Solution:

$$F(s) = \int_0^\infty e^{-st} f(t) dt = \int_2^\infty e^{-st} e^{3t} dt$$

$$= \int_2^\infty e^{(3-s)t} dt = \lim_{L \to \infty} \int_2^L e^{(3-s)t} dt$$

$$= \lim_{L \to \infty} \frac{e^{(3-s)t}}{3-s} \Big|_{t=2}^{t=L} = \frac{(e^{(3-s)s} - e)}{3-s}$$

$$= \frac{-e}{3-s} = \frac{e}{s-3}$$

1b (15 **pts**.) Determine

$$\mathcal{L}^{-1}\left\{\frac{3s+3}{s^2-6s+13}\right\}$$

Solution:

$$\frac{3s+3}{s^2-6s+13} = \frac{3s+3}{s^2-6s+9+4} = \frac{3s+3}{(s-3)^2+2^2}$$
$$= \frac{3(s-3)}{(s-3)^2+2^2} + \frac{12}{(s-3)^2+2^2}$$
$$= 3 \cdot \frac{(s-3)}{(s-3)^2+2^2} + 6 \cdot \frac{2}{(s-3)^2+2^2}$$

Thus

$$\mathcal{L}^{-1}\left\{\frac{3s+3}{s^2-6s+13}\right\} = 3\mathcal{L}^{-1}\left\{\frac{(s-3)}{(s-3)^2+2^2}\right\} + 6\mathcal{L}^{-1}\left\{\frac{2}{(s-3)^2+2^2}\right\}$$
$$= 3e^{3t}\cos 2t + 6e^{3t}\sin 2t$$

2a (15 pts.) Consider the initial value problem

$$y'' - 3y' + 2y = 12e^{2t}$$
 $y(0) = 2$ $y'(0) = 8$

Let $Y(s) = \mathcal{L}\{y\}(s)$. Use Laplace transforms to show that

$$Y(s) = \frac{12}{(s-1)(s-2)^2} + \frac{2s+2}{(s-1)(s-2)}.$$

Solution: Taking the Laplace transform of both sides of the DE we have

$$\mathcal{L}\{y''\} - 3\mathcal{L}\{y'\} + 2\mathcal{L}\{y\} = 12\mathcal{L}\{e^{2t}\}$$

or letting $Y(s) = \mathcal{L}\{y\}(s)$

$$s^{2}Y(s) - sy(0) - y'(0) - 3\{Y(s) - y(0)\} + 2Y(s) = \frac{12}{s-2}$$

Using the given initial conditions we have

$$(s^2 - 3s + 2)Y(s) - 2s - 2 = \frac{12}{s - 2}$$

Thus

$$Y(s) = \frac{12}{(s-2)^2(s-1)} + \frac{2s+2}{(s-2)(s-1)}$$

2b (15 **pts**.) Find the solution to the initial problem above, namely,

$$y'' - 3y' + 2y = 12e^{2t}$$
 $y(0) = 2$ $y'(0) = 8$

by finding

$$y(t) = \mathcal{L}^{-1}\{Y(s)\} = \mathcal{L}^{-1}\left\{\frac{12}{(s-1)(s-2)^2} + \frac{2s+2}{(s-1)(s-2)}\right\}$$

Solution:

In order to invert Y(s) we need to do a partial fractions breakup of Y(s).

We have

$$\frac{12}{(s-1)(s-2)^2} + \frac{2s+2}{(s-1)(s-2)} = \frac{A}{s-1} + \frac{B}{s-2} + \frac{C}{(s-2)^2}$$

Multiplication by the common denominator gives

$$12 + (2s+2)(s-2) = A(s-2)^2 + B(s-2)(s-1) + C(s-1)$$

Set s = 1

$$12 - 4 = 8 = A$$

Set s = 2

$$12 = C$$

Equate the coefficient of s^2 on each side of the equation.

$$2 = A + B$$

B = 2 - A = -6. Now, combining everything, we have

$$Y(s) = \frac{12}{(s-2)^{2}(s-1)} + \frac{2s+2}{(s-2)(s-1)}$$

$$= \frac{8}{s-1} + \frac{-6}{s-2} + \frac{12}{(s-2)^{2}}$$

$$y(t) = \mathcal{L}^{-1}\{Y(s)\} = \mathcal{L}^{-1}\left\{\frac{8}{s-1} + \frac{-6}{s-2} + \frac{12}{(s-2)^{2}}\right\}$$

$$= 8\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} - 6\mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} + 12\mathcal{L}^{-1}\left\{\frac{1}{(s-2)^{2}}\right\}$$

$$= 8e^{t} - 6e^{2t} + 12te^{2t}$$

3 (25 pts.) Find the first 5 nonzero terms of the power series solution about x = 0 for the DE:

$$y'' + 2x^2y = 0$$

Be sure to give the recurrence relation.

Solution:

$$y = \sum_{n=0}^{\infty} a_n x^n.$$

SO

$$y' = \sum_{n=1}^{\infty} a_n n x^{n-1}$$

and

$$y'' = \sum_{n=2}^{\infty} a_n(n)(n-1)x^{n-2}$$

.

The differential equation \Rightarrow

$$\sum_{n=2}^{\infty} a_n(n)(n-1)x^{n-2} + 2\sum_{n=0}^{\infty} a_n x^{n+2} = 0$$

Shifting the first series by letting n - 2 = k or n = k + 2, we have

$$\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1)x^k + 2\sum_{n=0}^{\infty} a_n x^{n+2} = 0$$

Shifting the first series by letting n + 2 = k or n = k - 2 we have

$$\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1)x^k + 2\sum_{k=2}^{\infty} a_{k-2}x^k = 0$$

Since the first series has two more terms, we have

$$2a_2 + 3 \cdot 2a_3x + \sum_{k=2}^{\infty} [a_{k+2}(k+2)(k+1) + 2a_{k-2}]x^k = 0$$

Thus

$$a_2 = a_3 = 0$$

and we have the recurrence relation

$$a_{k+2}(k+2)(k+1) + 2a_{k-2} = 0$$
 for $k = 2, 3, 4, ...$

or

$$a_{k+2} = -\frac{2}{(k+2)(k+1)}a_{k-2}$$
 for $k = 2, 3, 4, ...$

Therefore

$$a_{4} = \frac{-2}{4 \cdot 3} a_{0}$$

$$a_{5} = \frac{-2}{5 \cdot 4} a_{1}$$

$$a_{6} = \frac{-2}{6 \cdot 5} a_{2} = 0$$

$$a_{7} = \frac{-2}{7 \cdot 6} a_{3} = 0$$

$$a_{8} = \frac{-2}{8 \cdot 7} a_{4} = \frac{4}{8 \cdot 7 \cdot 4 \cdot 3} a_{0}$$

Thus

$$y(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 \left[1 + \frac{-2}{4 \cdot 3} x^4 + \frac{4}{8 \cdot 7 \cdot 4 \cdot 3} x^8 + \dots \right] + a_1 \left[x + \frac{-2}{5 \cdot 4} x^5 + \dots \right]$$

4 (25 **pts**.) Find all eigenvalues (λ) and the corresponding eigenfunctions for the boundary value problem

$$y'' + 3y + \lambda y = 0$$
 $y'(0) = y'(\pi) = 0$

Be sure to consider all values of λ .

Solution: This is an equation with constant coefficients. The characteristic equation is

$$r^2 + 3 + \lambda = 0$$

Thus

$$r = \sqrt{-3 - \lambda}$$

There are 3 cases to consider: $-3 - \lambda > 0$, $-3 - \lambda = 0$, and $-3 - \lambda < 0$.

Case I: $-3 - \lambda > 0$, that is $\lambda < -3$. Let $-3 - \lambda = \mu^2 \neq 0$. We have the two roots $r = \pm \nu$, and the solution

$$y(x) = c_1 e^{\mu s} + c_2 e^{-\mu x}$$

$$y'(x) = \mu (c_1 e^{\mu s} - c_2 e^{-\mu x})$$

$$y'(0) = c_1 - c_2 = 0$$

so $c_1 = c_2$ and

$$y'(x) = \mu c_1 (e^{\mu s} - e^{-\mu x})$$

Then

$$y'(\pi) = \mu c_1 (e^{\pi \mu} - e^{-\pi \mu}) = 0$$

Since $e^{\pi\mu} - e^{-\pi\mu} \neq 0$ this implies that $c_1 = 0$ and therefore $c_2 = 0$ and the only solution for $\lambda < -3$ is the trivial solution y = 0. Hence there are no eigenvalues if $\lambda < -3$.

Case II: $\lambda = -3$. Then r = 0 is a repeated root, and

$$y(x) = c_1 + c_2 x$$

$$y'(x) = c_2$$

$$y'(0) = c_2 = 0$$

$$y'(x) = 0$$

$$y'(2) = 0$$

Therefore c_1 may be any vallue and $\lambda = -3$ is an eigenvalue. Anticipating additional values in the next case, we write the eigenvalue and corresponding eigenfunction as

$$\lambda_0 = -3$$
$$y_0 = c_0.$$

Case III. $-3 - \lambda < 0$, that is $\lambda > -3$. Let $-3 - \lambda = -\mu^2 \neq 0$. We have the complex roots $r = \pm \mu i$ and

$$y(x) = [c_1 \cos(\mu x) + c_2 \sin(\mu x)]$$

$$y'(x) = \mu[-c_1 \sin(\mu x) + c_2 \cos(\mu x)]$$

$$y'(0) = \mu c_2 = 0$$

so $c_2 = 0$.

Thus

$$y'(x) = -\mu c_1 \sin(\mu x)$$

$$y'(\pi) = -\mu c_1 \sin(\pi \mu)$$

So, for a non-zero solution, we must have

$$\sin(\pi\mu) = 0$$

Thus $\pi\mu$ must be an integral multiple of π ...

$$\pi \mu = n\pi$$
 $n = 1, 2, 3, ...$

or

$$\mu_n = n$$
 $n = 1, 2, 3, ...$

And finally

$$\lambda_n = -3 + \mu^2 = -3 + n^2$$
 $n = 1, 2, 3, ...$

are eigenvalues with corresponding eigenfunctions

$$y_n(x) = c_n \cos(nx)$$
 $n = 1, 2, 3, ...$

Finally, we may combine cases II and III to have the eigenvalues and eigenfunctions

$$\lambda_n = -3 + n^2$$
 $n = 0, 1, 2, 3, ...$
 $y_n(x) = c_n \cos(nx)$ $n = 0, 1, 2, 3, ...$

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s) = \widehat{f}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s}$	$n \ge 1$	s > 0
e^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		s > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		