Ma 221		Final Ex	kam	18 May 2015	
Print Name:			Leo	cture Section:	
	Lecturer				
This exam consist each problem is in	-			blems. The point value of	
	sure that you	do all problems.		on the other side of the giving Laplace transforms	
be shown to obtain When you finish,	n full credit. be sure to sig	Credit will not bgn the pledge.	e given for work no	g this exam. All work must t reasonably supported.	
I pledge my h	onor that	I have abide	ed by the Steven	ns Honor System.	
Score on Problem	#1a	/10 #1b	/10 #1c	/10	
	#2a	/ 8 #2b	/ 8 #2c	/14	
	#3a	/15 #3b	/15		
	#4a	/ 9 #4b	/ 6 #4c	/15	
	#5a	/15 #5b	/10		
	#6a	_/ 4 #6b	/ 9 #6c	/ 4 #6d/ 8	
	#7a	/15 #7b	/15		
Total Score		/200			

1. Solve the following initial value problems.

(a) (10 pts)

$$x\frac{dv}{dx} = \frac{1+4v^2}{4v}, \quad v(1) = 0.$$

(b) (10 pts)

$$\frac{dy}{dx} + 4xy = 8x, \qquad y(0) = 0$$

1 (c) (10 pts)

$$(2xy - 3x^2)dx + \left(x^2 - \frac{2}{y^3}\right)dy = 0, y(1) = -1$$

2. (a) (8 pts) Find a general solution of

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 10y = 0, \qquad \text{for } -\infty < x < \infty.$$

2(b) (8 pts.) Find a general solution of

$$t^2 \frac{d^2 y}{dt^2} + 3t \frac{dy}{dt} + 5y = 0$$
, for $t > 0$.

2(c) (14 pts.) Use the method of undetermined coefficients to find a general solution of

$$L[y] = y'' + 5y' + 4y = e^{-t} + 4te^{-2t}.$$

3 (a) (15 pts.) Consider the differential equation

$$L[y] = t^2 \frac{d^2y}{dt^2} + 4t \frac{dy}{dt} + 2y = 4 \ln t, \quad \text{for } t > 1.$$

Solutions to the homogeneous equation are $y_1(t) = \frac{1}{t}$ and $y_2(t) = \frac{1}{t^2}$.

(i) Use the Wronskian, $W[y_1, y_2](t)$, to verify that y_1 and y_2 are linearly independent solutions on the interval t > 1.

(ii) Find a particular solution, $y_p(t)$ satisfying

$$L[y] = t^2 \frac{d^2y}{dt^2} + 4t \frac{dy}{dt} + 2y = 4 \ln t.$$

(iii) Find a general solution to the equation.

3 (b) (15 pts.) Classify each of the following differential equations as linear or nonlinear. If nonlinear, identify all terms that make the equation nonlinear. (In all cases, consider y to be the dependent variable and t the independent variable.)

	Equation	Linear/nonlinear	Nonlinear terms
(i)	$y'' + 3y' + 4\sin(y) = 0$		
(ii)	$y'' + 3y' + 4y = \cos(4t)$		
(iii)	$t^2y'' - ty' + y = \ln(t)/t$		
(iv)	$e^{-t}dy + (t^2y - \sin t)dt = 0$		
(v)	y'' + 2yy' + 4y = 0		
(vi)	$ty' + t^3y^2 = 4t^2$		

4. (a) (9 pts.) Find the inverse Laplace transform for

$$F(s) = \frac{2s+1}{(s+2)^3}$$

.

4 (b) (6pts.) Determine the Laplace transform for $f(t) = t \sin(3t)$.

4 (c) (15 pts.) Solve using Laplace Transforms:

$$L[y] = y'' + 2y' + 5y = te^{-2t}, \quad y(0) = 0, \ y'(0) = 1.$$

5. (a) (15 pts.) Find the first five non-zero terms of the Fourier cosine series for the function

$$f(x) = \begin{cases} 0, & 0 < x < \frac{1}{2} \\ x, & \frac{1}{2} < x < 1 \end{cases}.$$

5(b) (10 pts.) To what value does the Fourier series of 5a converge at each of the following points?

(i)
$$x = -\frac{3}{4}$$

(ii)
$$x = 0$$

(iii)
$$x = \frac{1}{2}$$

(iv)
$$x = 1$$

(v)
$$x = \frac{3}{2}$$

6 (25 pts.) Consider the following initial-boundary value problem for the heat equation.

PDE
$$u_t = 3u_{xx}, \quad 0 < x < \pi, \quad t > 0$$
 (1)

BC1
$$u(0,t) = 0, t > 0$$

BC2
$$u_x(\pi, t) = 0, t > 0$$
 #

IC
$$u(x,0) = 3\sin\frac{x}{2} - \sin\frac{11x}{2} + 7\sin\frac{19x}{2}, \quad 0 < x < \pi$$

6 (a) Let the solution be u(x,t) = X(x)T(t). Use the method of separation of variables and the boundary conditions to obtain an eigenvalue problem for X(x) and a differential equation for T(t).

6 (b) Solve the eigenvalue problem.

Name Lecturer	Name	Lecturer
---------------	------	----------

6 (c) For each eigenvalue, solve the corresponding differential equation for T(t). For each eigenvalue give the corresponding solution to the heat equation.

6 (d) Give the formal series solution to the initial-boundary value problem. Apply the initial condition to determine the coefficients of the series. Give the final solution to the problem.

Name	Lecturer
1 (001110	

7 (a) (15 pts.) Find the power series solution to the initial value problem

$$y'' + 2xy' - 3y = 0,$$
 $y(0) = 1, y'(0) = 0.$

Be sure to give the recurrence relation for the coefficients of the power series. Give the first five nonzero terms of the solution.

7 (b) (15 pts.) Find the eigenvalues and eigenfunctions for

$$y'' + \lambda y = 0, \qquad 0 < x$$

$$y'(0)=0$$

$$y(5)=0$$

Be sure to consider the cases $\lambda < 0, \lambda = 0$, and $\lambda > 0$.

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s) = \widehat{f}(s)$		
1	$\frac{1}{s}$		s > 0
t^n	$\frac{n!}{s^{n+1}}$	$n \ge 1$	s > 0
e ^{at}	$\frac{1}{s-a}$		s > a
$\sin bt$	$\frac{b}{s^2 + b^2}$		s > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}t^n$	$\frac{n!}{(s-a)^{n+1}}$	$n \ge 1$	s > a
$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}$		s > a
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$		s > a
$e^{at}f(t)$	$\mathcal{L}{f}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		

Properties of Laplace Transforms

$\mathcal{L}{f+g} = \mathcal{L}{f} + \mathcal{L}{f}$
$\mathcal{L}\{cf\} = c\mathcal{L}\{f\}$
$\mathcal{L}\left\{f'\right\}(s) = s\mathcal{L}\left\{f\right\}(s) - f(0)$
$\mathcal{L}\left\{f^{\prime\prime\prime}\right\}(s) = s^2 \mathcal{L}\left\{f\right\}(s) - sf(0) - f'(0)$

Table of Integrals

$$\int \sin^2 x dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$$

$$\int x \cos bx dx = \frac{1}{b^2} (\cos bx + bx \sin bx) + C$$

$$\int x \sin bx dx = \frac{1}{b^2} (\sin bx - bx \cos bx) + C$$

$$\int \sec x dx = \ln|\sec x + \tan x| + C$$

$$\int \ln t dt = t \ln t - t + C$$

$$\int t \ln t dt = \frac{1}{2} t^2 \ln t - \frac{1}{4} t^2 + C$$

$$\int t^2 \ln t dt = \frac{1}{3} t^3 \ln t - \frac{1}{9} t^3 + C$$

$$\int t \ln^2 t dt = \frac{1}{4} t^2 (2 \ln^2 t - 2 \ln t + 1) + C$$

$$\int \frac{\ln t}{t} dt = \frac{1}{2} \ln^2 t + C$$