Name:	_ Lecturer	
Lecture Section:		
Ma 221	Exam IB	14 F
I pledge my honor that I have abided by the Stevens Honor System.		
You may not use a calculator, cell phone, or co shown to obtain full credit. Credit will not be g you finish, be sure to sign the pledge.	•	
Score on Problem #1		
#2		
#3		
#4		
Total Score		

Name:	Lecturer
Lecture Section:	

Solve the following differential equations. Characterize your solution as explicit or implicit.

$$\frac{dy}{dx} = \frac{-y}{x} + \frac{4}{y^2}$$

Name:	Lecturer
rume	Ecctarci

Lecture Section: _____

$$\frac{dy}{dx} = \frac{-[2x\sin(x^2 + y^2) + 3\cos(3x)]}{[2y\sin(x^2 + y^2) + 2\cos(2y)]}$$

.

Name:	Lecturer

Lecture Section: _____

$$\frac{dy}{dx} = \frac{3y}{x} + x^3 \sin x \qquad y\left(\frac{\pi}{2}\right) = 8$$

Name:	
ranic.	

Lecturer _____

Lecture Section: _____

$$\frac{dy}{dx} = \frac{\sin^2 x}{\cos^2 y} \qquad y\left(\frac{\pi}{4}\right) = \frac{\pi}{4}$$

Name:	Lecturer	

Lecture Section:

Table of Integrals

$$\int \sec^{2}t dt = \tan t + C$$

$$\int \frac{\sec^{2}t}{\tan t} dt = \ln(\tan t) + C$$

$$\int \tan t dt = \ln(\sec t) + C$$

$$\int te^{at} dt = \frac{1}{a^{2}} e^{at} (at - 1) + C$$

$$\int t^{2} e^{at} dt = \frac{1}{a^{3}} e^{at} (a^{2}t^{2} - 2at + 2) + C$$

$$\int \cos^{2}t dt = \frac{1}{2}t + \frac{1}{4}\sin 2t + C$$

$$\int \cos^{3}t dt = \frac{1}{3}\cos^{2}t \sin t + \frac{2}{3}\sin t + C$$

$$\int \sin^{2}t dt = \frac{1}{2}t - \frac{1}{4}\pi - \frac{1}{4}\sin 2t + C$$

$$\int \sin^{3}t dt = \frac{1}{12}\cos 3t - \frac{3}{4}\cos t + C$$