Ma 221 Final Exam Solutions
12/16/14

Print Name: Lecture Section:

1.
(@) (8 pts) Solve

dx 2eY
Solution: It is a separable equation. Separate the variables
2e7Ydy = sinxdx.

d -
_y _ SInXx y(o) =0.

Integrate
—2eY = —cosx + C.
Use the initial condition y(0) = 0
-2=-1+C=>C=-1.
Thus, the implicit solution is
—2eY = —cosx—1
(b) (7 pts) Solve
(2xcosy + 1)dx + (—x2siny + 2y )dy = 0.
Solution: The d.e. is not linear nor separable, check if it is exact. Let
M = 2xcosy+1, N = —xZsiny + 2y.
The derivatives
My = —-2xsiny,Nx = —2xsiny
are equal and continuous and so it is exact. Using Fx = M
F = I(Zxcosy +1)dx = x2cosy + X + g(y).
Using Fy = N
—x2siny+g' = —x2siny+2y = g'(y) = 2y.
Hence we take g(y) to be an antiderivative of —2y
g(y) = y2 = F(x,y) = X2cosy + X + y2
The implicit solution is
x2cosy +x+y2 =c¢
1 (c) (10 pts) Find a general solution of
x2y" +3xy’ + 5y = 0.
Solution: This is a Caughy-Euler (or equi-dimensional) equation. We look for a solution of the form
y = x". Substitution gives
r(r—21)x" +3rx" +5x" =0
(r2+2r+5)x" =0
r2+2r+l=-4
(r+1)2 =-4
r=-1+2i
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One could also use the quadratic formula to solve the indicial equation. So the solutions come from the
real and imaginary parts of one of the complex solutions.
xF = x— 142 _ y—2y2i

_ -1 <elnx>2i — x—1g2ilnx

= x1cos(2Inx) +isin(2Inx)]
Finally, a general solution of the d.e. is

y = c1xLcos(2Inx) + casin(2Inx).

2. (a) (12 pts) Find a general solution of

y'" —2y' = 4x + 2 - 10sinx.
Solution: First, the auxillary equation r2 — 2r = 0 has the roots r = 0,2 and the homogeneous equation
has a general solution
yh=C1+ C2e2X.
@ Let us use the method of undetermined coefficients. For f1(X) = 4x + 2, we see thata = 0 isa
single root of the auxillary equation, and therefore we take
Yp; = X(AX +B).
Substitute it in the equation with fq
2A — 2(2AX + B) = 4x + 2,
which leads to
~4A=4,20-2B=2=A=-1,B=-2=yp = x> -2x
@ For fa(x) = —10sinx there are two ways to find yp,.
First approach: since = i is not a root of the auxillary equation we take
Yp, = Acosx + Bsinx.
Substitute it into the equation to get
— Acosx — Bsinx — 2(—=Asinx + Bcosx) = —10sinX,
(A —2B)cosx + (—B + 2a) sinx = —10sinX,
A=-4, B=2,
Yp, = —4C0SX + 2sinX.

Second approach: add the equation with f»(x) to its comlimentary equation to get
w' - 2w'iX,
Since @ = i is not a root of the auxillary eqaution
—10e™ _ 10 i
i2 - 2i 1+2i
= 2(1 - 2i)e™ = 2(1 - 2i)(cosx + isinx).
Yp, = Imwp = —4cosx + 2sinX.

Wp =

@ Using the superposition principle
yp = —X% — 2x — 4COSX + 2sinX.
@® Hence, a general solution is
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Y=Ynh+Yp
Cq +Cpe?X = —x2 — 2x — 4cosX + 2sinX.
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2(b) (13 pts.) Find a general solution of
y" =2y +y =eXInx.
Solution: First, the auxillary equation r2 — 2r + 1 = 0 has the double root 0 and the homogeneous
equation has a general solution
yh = C1eX + CoxeX.
@® \We can not use the method of undetermined coefficients to find a particular solution. Let us use
the method of variation of parameters. Assume
Yp = vi(x)eX + v (x)xeX.
Find v1(x) and vy (x) using the system of equations (we can use direct formulas as well):
vieX +vhxeX =0,
vieX +vh(eX +xeX) = eXInx.
Subtract the first equation from the second and divide by e* to get v/2 = Inx and then from the
first equation we obtain vj = —xv, = —xInx. Find antiderivatives

Vi = I—xlnxdx = —%lenx+ %xz,

Vo = ~|.Inxdx = xInx —x.
Hence, a particular solution is
yp = (—%x2 Inx + %xz)eX + (xInx — x)xeX

1,2 X _ 3 y2aX
= =Xx4Inxe* — =x4e*.
2 4
and a general solution is
y = C1eX + CoxeX + %xz InxeX — %xzex.
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3.(a) (10 pts.) Let
tforO<t<1

gt) =
el forl<t<ow

Use the definition of the Laplace transform to find -£{g(t)}.
Solution: By definition

0 1 o
£4gy = [ e stgtdt = [ esttdt+ [ e et

For the first integral

1 1
eSttdt = —LTtest— Lest| —_Lles_Lles 1
For the second integral
0 ) N . 1-s)t [N
I e-Stetdt = lim [ e-Stetdt = lim €5
1 N—oo J 1 Noow 1—5 1
. 1-N _ al-s 1-s
~ im 88N el el g
Nooo 1-5s s—1

Fors < 1 it diverges, and for s = 1 it also diverges as jOlodt. Hence, fors > 1

_ 6+l s, 1, el
L£{g} = 2 e +52+s—1'
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(b) (15 pts.) Solve using Laplace Transforms:

y' -2y’ -3y =16et y(0) =1 y'(0)=3.
Solution: LetY = £{y}. Apply the Laplace transform to the equation
s2Y —s—3-2(sY-1) -3y = 16

s+1'
2 _9e_ _ _16
(s —25s-3)Y s+1+s+1’
_ s242s417

(s+1)%(s-3)
Find the inverse Laplace transform of Y. We have
s2+2s+17 _ A, B . _C

(s+1)32%s-3) s-3 s+l  (s+1)2’
$24+25+17 = A(s+1)2+B(s—3)(s+1) + C(s - 3).
Substitute s = 3 to get
9+6+17 =A42 = 32 = Al6 = A= 2.

Substitute s = —1 to get

1-2+17=-4C > 16 =-4C > C =-4.
Compare the coefficients at s2

1=A+B=B=-1.

Therefore

_ - _ - 2 - 1 - 4
y= ey = e gEy ey s e

=2e3t et _4tet,
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4.) a.) (10pts.) Use separation of variables, u(x,t) = X(x)T(t), to find two ordinary differential
equations which X(x) and T(t) must satisfy to be a solution of

xt 02U _ oy _ 312{5.0U _
e o2 (x 3)tat 0.

Note: Do not solve these ordinary differential equations.

Solution:
ux,t) = X)T(t)
62u _ X// .T
ox?
2%u _ X.T"
ot?

e IX'T - (x - 3)2t5XT" = 0
eXetX'T = (x - 3)2t5XT"
eXx”  _ 21" _

(x — 3)2X T
The last step is the observation that one side is a function only of x and the other side is a function only
of t so they must be constant. Any name for the constant may be used. | chose —A since the next step
of often an eigenvalue problem. Taking one at a time produces the two O.D.E.s.
X"+ Ax=3)2X =0
t2e!T" + AT = 0.

¢l 253 4+ 552 4 65 + 7 _
(s2-1)(s®+4s+5)
Solution: After completing the square in the quadratic factor in the denominator, we set up the partial
fractions expansion needed.
253 45524 654+7  _ 253 + 552 4 65 + 7
(s2-1)(s?+4s+5)  (s?-1)(s®+4s+4+1)
_ 253 + 552 + 65+ 7
s+16E-D[(s+2)%+1]
A B C(s+2)+D
+ + 5
s+1  s-1 " (s+2)%2+1
The numerator of the second fraction could be Bs + C, but that would require some extra algebra to
invert the Laplace transform.

b.) (15 pts.) Find
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We multiply by the common denominator.
253 +552+65+7 =A-1)[(s+2)2+1]+B(s+1)[(s+2)2+1]+[C(s+2) + DI(s—-1)(s+1)

Sets = —1.
-2+5-6+7=4=A(-2)(2)

A=-1
Sets = 1.
2+5+6+7=20=B(2)(10)
B=1
Sets = -2.
-16+20-12+7 = -1 = A(-3) + B(-1) + D(-3)(-1)
-1=3-1+3D
D=-1
Equate the coefficients of s3.
2=A+B+C
C=2
Thus
253 +552+65+7  _ _-1 1 26+2)-1

(s2-1)(s2+4s+5) s+1 51 (s+2)%+1

)
21 gs + 55 5+ 6s +7 — —et4el 4 2e2tcost — e 2sint
(s2-1)(s?+4s+5)
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5. (a) (15 pts.) Find the first five non-zero terms of the Fourier sine series for the function
0 O0<x
) = <X<rm
1 n<x<2n

f(x) = > asin kLLX
k=1

Solution:

where

o = & j f(x) sin X2X kﬂx dx, k=1,2,3,...
Here L = 27 50
100 - S ein(5)

here k=1

ay = %js”f(x)sin(%)dx, k=123,...
Thus

o= A [o0-sn(g Yo [ 1-9n(g Yo

(#) N
o [ coskr —cos(5°)

Calculating until we have five that are non zero, we obtain

a; = Z2[-1-0]= 2
_ =2 ——
32—27[[1+1] o
=211 _11=
ay = 72[1-1] =0
_ =27 1_01= -2
a5_57r[1 0] 5m
% = 5L+ = 5

Finally, the Fourier series is

f(x) = Zaksm kX _ als|n< ) +a25|n( 2X ) +a35|n( 3X)

Fan(3) - fan(3) s Zan(3) 57[5'”(5”) GRS PAS

5(b) (10 pts.) To what value does the Fourier series of 5a converge at each of the following points?
Solution:

i) x=-3 f(-3&)-- (i)x=0 f(0)=0 (i) x=n  f(r) =%
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vy x=3  f(3Z)-1 W) x=23F f(32) = -1

10
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6 (25 pts.) Solve the following initial-boundary value problem.

PDE Ut = 3Uxx, O<x<4, t>0
BCs ux(0,t) =0 ux(4,t) =0
IC  ux0) = cos(%x) — 7cos %x) + 5cos 37”x>
You must derive the solution. Your solution should not have any arbitrary constants in it. Show all
steps.
SoIF:Jtion: Separation of Variables:
ux,t) = X(x)T(t)
X(x)T'(t) = 3X"(x)T(t)
" !
Two ordinary differential equations result.
X"+ X =0
T +3AT =0
The boundary conditions lead to boundary conditions on X.
ux(0,t) = X'(0)Tt) =0 = X'(0)=0
ux(4,t) =X'@OTt) =0 =X'@)=0

We next solve the resulting eigenvalue problem. The characteristic equation gives r = +/-1. We
look at the discriminant being positve, zero or negative.

Casel. -A>0 —2A=p2
X = c1e¥ +cpe ™
X' = u(creX — coe™HX)
X'(0) = u(cy—c2) =0

C1=2¢C2
X'(4) = pcy (e —e™4) =0
c1=C=0
Case2 —-A=0
X = C1 + CoX
X' =¢,
X'(0)=cp,=0
X'(4)=c,=0
So A = 0is an eigenvalue and we will lable th corresponding eigenfunction
Xo = Cp.

Case3 -A <0 —2=—u?

11
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X = €1 COS X + C2 Sin ux

X" = p(~cq sin ux + ¢ €OS i)
X'(0) = uc; =0

cp =0

X'(4) = —cqusindu =0
So, non-zero solutions require sin4u = 0. We have

4y =nr n=123,...
yn:r[T” n=123...
2
— n_ﬂ'- =
xn_(4) n=123,...

Xn = cmos(%x n=1,23,...

We can combine cases 2 and 3 by adjusting the range of the index.
- nhr =
pin = = n=0,123,...
2
— n_ﬂ: =
an = (02 n=0123,...
Xn = Cn cos(n—”x> n=0,123,...

4
The d.e. for T.

T +3AT =0
T/ +3(’}TE)ZT -0

Th = Anexp (—3(%) 2t>

un(X,t) = Xn(X)Tn(t)
2
_ _3( hn N
= AnCn exp( 3( 4 ) t) cos( 4 x)
A formal solution is obtained by summing. (The two constants are combined in this step.)

ux,t) = D un(x,t)

n=0

% 2
= an exp<—3<%> t) cos(%x)
n=0
To find the coefficients, we use the initial condition.

u(x,0) = ian cos(%x)
n=0

= cos(%x) - 7COS<%T7TX> + 5cos(37”x>

Matching terms leads to a, = 1, ag = —7 and ag = 5. All the rest are zero. With this, the solution is

We combine the results.

12
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ulx,t) = exp<—3<%T”>2t> cos(%x) - 7exp<—3<%T”>2t> cos %’x) + 5exp<—3<§T”>2t> cos %x)

13



Ma 221 - 2014F - Exam Solutions

7. (a) (13 pts.) Find a general solution of

e—X

y' 2y vy = =
X

Solution: We solve this d.e. by the method of variation of parameters. The characteristic equation is
rP+2r+l=(r+1)2=0.

Hence
Yh = c1e X + coxe %,
yi=e* y3=-e*
y2 =xeX  yh = (1-x)e™*
Assuming

Yp = Viy1 +VaYy2
we have two equations for vy and v5.

e™Xv] +xeXvh = 0 (A)
—eXV] + (1 -x)e, = P;(;ZX (B)
Add these to obtain
eXv, = % (C)
X
vy = x%

Vo = % +C2

—X
eV +x&— =0
1 2
X
=1
Vi =X
vy = —Inx+cq

A general solution is
_ _ X _ 1 X
y =(c1—-Inx)e *+ (Cz X )xe .

14
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7 (b) (12 pts.) Find the power series solution to

y +xy' —2y=0
near x = 0. Be sure to give the recurrence relation for the coefficients of the power series. Indicate
the two linearly independent solutions and give the first six nonzero terms of the solution.

Solution:
0
y =Y anx".

n=0
0]

o0

y' = annx"?

n=1

and

y" = an(m(n - 1)x"2
n=2

The differential equation =
o0 o0 o0
D anm)(n - Dx"2+ > annx" - > 2anx" = 0
n=2 n=1 n=0
In the first series, we set k = n — 2 (which is the same as n = k + 2).
o0 o0 o0
D (k+2)(k+ Dagoxk + D annx" = D 2anx" = 0
k=0 n=1 n=0
Next, replace n by k in the other two series.

D (k+2)(k+ Dagoxk + D" agkxk = > 2a,xk = 0
k=0 k=1 k=0

Observe that the middle series has one less term. We bring out the k = 0 terms from the first and last
series and combine the rest.

(2ap —2a0) + D _[(k+2)(k + D)ay + (k — 2)ay]xk = 0
k=1
From the first term
az = ag
From the rest, we obtain the recurrence relation.
(k+2)(k+Dagp +(k—2)ax =0 k=1,23,...

_ 2-k _
Ay = (k+2)(k+1)ak k=123,...

We have three non-zero coefficients (ao,a1,a2) so we need three more.

15
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k=1 2a3—3+2a1
k=2 >as=0
k=3 za5=ﬁa3—g—!1a1
k=4 28.6:6_—.258.420

_ -1)%3.1
k=5 :a7=7.36=( )7! ai

Now, the solution is

o0
y =Y anx" = ag +agx+axx? +agx® + -
n=0
15,317

=a0<1+x2>+a1(x+%x3—ﬁ =

16

+...
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8 (a) (15 pts.) Find the eigenvalues and eigenfunctions for
y"+ay=0 0<x<1
y'(0)=y(1) =0
Be sure to consider the cases A < 0,4 = 0, and A > 0.

Solution: The characteristic equation is r2 + A = 0. Thusr = +,/=1. We consider the three cases of
the quantity under the radical being positive, zero or negative.

Case 1. -1 > 0. We write —A = p2. The solution to the d.e is
y = c1eX + coe X
y' = u(cieX —coe™HX)
From the boundary conditions,1
y'(0) = u(cy —c2) =0

C1 =0C»
y(1) :cl<e+%) =0
c1=Cr=0

There is no non-zero solution in this case.
Case2 —-A =0 Thesolution tothe d.eis

Yy =C1+CoX
y' =c2
From the boundary conditions,
y'(0)=c2=0
yd)=c1=0

Again, there is no non-zero solution.
Case3. -2 <0 Wewrite—A——p2. r=+,/-u? = +ui. The solution to the d.e. is
Yy = €1 COS uX + Cp Sin ux
y' = p(—C1Sin ux + €5 cos ux)
From the boundary conditions,
y'(0) = pc2 = 0
cp =0
y(1) = cacospu
For a non-zero solution, we must have
cosu =20
un=(2n+1)% n=0,12,...

So the eigenvalues (1n) and corresponding eigenfunctions (yn) are

2
An = pl = [(2n+1)%] n=012,...

yn = Cn cos(%nx) n=0,12,...

17
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8(b) (10 pts.) Solve the initial value problem

dy _ secx _
i +ytanx = —y2 y(0) =1

Solution: This is a Bernoulli equation. We write it as

yzﬂ + (tanx)y3 = secx

dx
Let
v=y3
d
The d.e becomes
%d—‘): + tanxv = secx

AV | 3tanxv = 3secx
dx

This is a linear d.e. The integrating factor is
0= ej3tanxdx _ e-3Incosx _ gln(cosx)~3
= (cosx) 3 = sec3x
Multiply by the integrating factor.

sec3xAY. . 3tanxsec3xv = 3sectx

dx
d 3, _ 4
&@sec x) = 3sectx
(vsec®x) = tanx + % tan3x + C
Multiply by cos3x.
v =y3 = sinxcos?x + %sine’x + Ccos3x
From the initial condition
1=C
The impicit solution is

y3 = sinxcos2x + % sindx + cos3x

18



Ma 221 - 2014F - Exam Solutions

Table of Laplace Transforms

f(t) F(s) = L{f}(s)
A n>1/s>0
(n-1t | "
edt 5 1 = s>a
; b
sinbt 7 . p? s>0
s
cos bt Y, s>0
edlf(t) | L{fi(s—a)
ORG-S NERUIO)

Table of Integrals

jsinzxdx = — L cosxsinx+ Lx+C

2 2
1 1

jcoszxdx =5 cosSXsinXx + X+ C

[xcosbxdx = —L-(cosbx + bxsinbx) + C
b

[ xsinbxdx = b—lz(sin bx — bxcosbx) + C

[tanudu = —In(cosu) +C

[tan?udu = tanu—u+C

jsecudu = In(secu +tanu) + C

[sec?udu = tanu +C

[secdudu = L-[secutanu + In(secu +tanu] + C

jsec"'udu = tanu + %tanSU +C

flnudu =ulnu-u+C

fulnudu = Lu2lnu-4u2+cC

2 4
[u?Inudu = %u:”lnu— %u3+C

Inu _ 102
deU—?In u+C

19




