Ma 221

Chapter 1 - Basic Concepts

Classification of Differential Equations

A differential equation is an equation involving an unknown function and one or more of its derivatives. Thus it is a relation of the form

$$
F\left(x, y, \frac{d y}{d x}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0
$$

F is given, and we are to find y. The above is an ordinary differential equation of order n.
Example

$$
\frac{d y}{d x}=f(x) \text { or } y^{\prime}=f(x)
$$

Definition. The order of a differential equation is the order of the highest derivative appearing in the equation. If the equation is a polynomial in the unknown function and its derivatives, then the degree of such an equation is the power to which the highest derivative is raised.
Example $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$. second order, first degree
Remark: $f(x)=0 \Rightarrow$ homogeneous equation. $f(x) \neq 0$ nonhomogeneous.
Example $\quad\left(\frac{d^{3} s}{d t^{3}}\right)^{2}+5 s^{4} t^{3}=0 \quad$ 3rd order, 2nd degree
Example $2 x y^{\prime \prime}-(x+3) y^{\prime}+6 x^{4} y=0 \quad$ 2nd order, first degree
Up until now we have mentioned only ordinary differential equations. We shall eventually be concerned with partial differential equations also.

Example

$$
u u_{x x}=\frac{1}{c^{2}} u_{t}
$$

Here $u=u(x, t)$. This is a partial differential equation. Here c is a constant.

Solutions of Differential Equations.

Consider the n-th order ordinary differential equation

$$
\begin{equation*}
F\left(x, y, \frac{d y}{d x}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0 \tag{1}
\end{equation*}
$$

Definition. A solution of the ordinary differential equation (1) is a real valued function $y(x)$ defined on some interval I such that:

1. $y(x)$ and its first n derivatives exist for each $x \in I$.
2. The substitution of $y(x)$ into the differential equation makes the equation an identity in the interval I . Remarks: I may be $(-\infty, \infty),[a, b],(a, b),(a, b],[a, b)$. We assume I is not degenerate. Now $1 \Rightarrow y$ and its $n-1$ first derivatives are continuous.
Example $y^{\prime}=x \quad-\infty<x<\infty \quad y=\frac{1}{2} x^{2}$ is a solution since

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} x^{2}\right)=x
$$

Thus $y(x)=\frac{1}{2} x^{2}$ is solution for $-\infty<x<\infty$.
The function

$$
y=\left\{\begin{array}{cc}
\frac{1}{2} x^{2}-1 & x \geq 0 \\
\frac{1}{2} x^{2} & x<0
\end{array}\right.
$$

is not a solution of the differential equation on $-\infty<x<\infty$ due to the discontinuity at $x=0$. $y=\frac{1}{2} x^{2}$ -1 is a solution on $0<x<\infty$ whereas $y=\frac{1}{2} x^{2} \quad$ is a solution on $-\infty<x<0$.
Example $y^{\prime}+y=0$ One solution is $y=e^{-x}$. The general solution is $y=c e^{-x}$, where c is any constant.

Remarks about solutions:

1. Sometimes we obtain the solution to a differential equation implicitly in the form $f(x, y)=0$. We need not always solve for y as a function of x (cannot). However, we can verify that we have a solution by implicit differentiation.
Example $\quad e^{y} \frac{d y}{d x}+x=0$

$$
\Rightarrow e^{y} d y+x d x=0
$$

$$
\Rightarrow e^{y}+\frac{x^{2}}{2}=c \quad\left({ }^{*}\right)
$$

We could write $y=\ln \left(c-\frac{x^{2}}{2}\right)$ but need not. To see if $(*)$ is a solution we differentiate implicitly. (*) $\Rightarrow e^{y} \frac{d y}{d x}+x=0$.
2. Not all equations have solutions.

Example $\quad\left(y^{\prime}\right)^{2}+y^{2}=-1$ has no solution.
Clearly $y=0$ is not a solution. If $y \neq 0, \Rightarrow y^{2}>0$ and $\left(y^{\prime}\right)^{2}>0$.

Initial and Boundary Value Problems

We have seen above that a differential equation need not have a unique solution.
Example $y^{\prime}=x \quad y=\frac{1}{2} x^{2}+c$.
If we are given some subsidiary condition then we will "pick" out a unique solution. For example, if we are given the initial conditions $y(0)=-1 \Rightarrow c=-1 \Rightarrow$ and $y=\frac{1}{2} x^{2}-1$.
For first order equations one is given one condition. For second order equations one needs two conditions.
Example $y^{\prime \prime}+y=0$
One may verify directly that $y=c_{1} \sin x+c_{2} \cos x$ is the solution, where c_{1} and c_{2} are constants. If, for example, we are given $y(0)=0$ and $y^{\prime}(0)=1 \Rightarrow$ $y(0)=c_{1} \sin 0+c_{2} \cos 0=c_{2}=0 \Rightarrow y=c_{1} \sin x \Rightarrow y^{\prime}(x)=c_{1} \cos x \Rightarrow y^{\prime}(0)=c_{1}=1$ Thus $y=\sin x$ is the solution.

We could have been given the boundary conditions $y(0)=0 \quad y=\left(\frac{\pi}{2}\right)=2$

$$
\Rightarrow c_{2}=0 \text { as before. Also } y\left(\frac{\pi}{2}\right)=c_{1} \sin \frac{\pi}{2}=2 \quad \Rightarrow c_{1}=2 . \Rightarrow y=2 \sin x
$$

The above are two different kinds of conditions. When the two conditions are given at the same point, they are called Initial Conditions; when the two conditions are given at two different points, they are called Boundary Conditions.
The equation together with the two conditions is called either an Initial Value Problem (I.V.P.) or a

Boundary Value Problem (B.V. P.).

Example

$$
\begin{aligned}
\text { DE } y^{\prime \prime} & =2 x \\
\text { B.C. } y(0) & =0 \quad y(2)=1
\end{aligned}
$$

This is a B.V.P.

$$
y^{\prime}=x^{2}+c_{1}
$$

so

$$
y=\frac{x^{3}}{3}+c_{1} x+c_{2}
$$

$$
\begin{aligned}
& y(0)=0 \Rightarrow c_{2}=0 \quad y(2)=1 \Rightarrow \frac{8}{3}+2 c_{1}=1 \Rightarrow 2 c_{1}=1-\frac{8}{3}=-\frac{5}{3} \text { and therefore } c_{1}=-\frac{5}{6} \\
& \Rightarrow \quad y(x)=\frac{x^{3}}{3}-\frac{5}{6} x
\end{aligned}
$$

is the solution.

Example

$$
\begin{gathered}
\text { D.E. } y^{\prime \prime}=2 x \\
\text { I.C. } y(1)=0 \quad y^{\prime}(1)=-1
\end{gathered}
$$

This is an I.V.P.

$$
\begin{gathered}
y^{\prime}=x^{2}+c_{1} \\
\text { so } y(x)=\frac{x^{3}}{3}+c_{1} x+c_{2} \\
y(1)=0 \quad \Rightarrow \frac{1}{3}+c_{1}+c_{2}=0 \\
y^{\prime}(1)=-1 \quad \Rightarrow 1+c_{1} \quad=-1 \\
\Rightarrow c_{1}=-2 \text { and } \frac{1}{3}-2+c_{2}=0 \quad \Rightarrow c_{2}=\frac{5}{3}
\end{gathered}
$$

Thus

$$
y(x)=\frac{x^{3}}{3}-2 x+\frac{5}{3}
$$

is the solution.

