Ma 221 Final Exam Review

Problems on Fourier Series, Boundary Value Problems and Separation of Variables

Ma 227 Final Exam 95S
Problem 1
Find the first four nonzero terms of the Fourier sine series of

$$
f(x)=\left\{\begin{array}{rl}
0 & 0<x<\pi \\
-2 & \pi<x<2 \pi
\end{array}\right.
$$

Solution:
If $f(x)$ is a function defined on $[0, L]$, then its Fourier sine expansion is given by

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right) \quad \text { where } \quad a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Here $L=2 \pi$ so that $f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n x}{2}\right)$ and

$$
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin \frac{n x}{2} d x
$$

Hence $a_{n}=\frac{1}{\pi}\left[\int_{0}^{\pi} 0 \sin \frac{n x}{2} d x+\int_{\pi}^{2 \pi}(-2) \sin \frac{n x}{2} d x\right]=$

$$
\frac{1}{\pi}(4)\left[\frac{\cos \pi n-\cos \left(\frac{1}{2} \pi n\right)}{n}\right]
$$

Evaluating this last expression for $n=1,2,3,4,5$ we get
$n=1 \quad a_{1}=\frac{4}{\pi}[-1]$
$n=2 \quad a_{2}=\frac{4}{\pi}[1]$
$n=3 \quad a_{3}=\frac{4}{\pi}\left[-\frac{1}{3}\right]=-\frac{4}{3 \pi}$
$n=4 \quad a_{4}=0$
$n=5 \quad a_{5}=\frac{4}{\pi}\left[-\frac{1}{5}\right]=-\frac{4}{5 \pi}$
Thus $f(x)=-\frac{4}{\pi} \sin \frac{x}{2}+\frac{4}{\pi} \sin x-\frac{4}{\pi} \sin \frac{3 x}{2}+0 \sin 2 x-\frac{4}{\pi} \sin \frac{5 x}{2}+\cdots$
b) (8 points)

Sketch the graph of the function to which the Fourier sine series of the function
$f(x)=\left\{\begin{array}{rl}0 & 0<x<\pi \\ -2 & \pi<x<2 \pi\end{array}\right.$
converges on $-2 \pi<x<4 \pi$.
Solution
The graph of the given function is below.

Since we were asked to find the Fourier sine expansion of $f(x)$, this means that we are seeking an odd expansion of f. Hence the graph above is reflected first across the y-axis, and then across the x-axis to get an odd function. The result is given below.

The Fourier sine series generates an odd function with period $2 L$. Here $L=2 \pi$, so the function generated by the Fourier series has period $2(2 \pi)=4 \pi$. Since the last graph above given the function on the interval $[-2 \pi, 2 \pi]$, i.e., on an interval of length 4π, we may move this graph either to the left or the right to get the function anywhere. Thus we have

c) (9 points)

Find the eigenvalues and eigenfunctions for the problem
$y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=y^{\prime}(1)=0$
Be sure to check the cases $\lambda<0, \lambda=0$, and $\lambda>0$.
Solution
I. Consider the case $\lambda<0$ first. Let $\lambda=-\alpha^{2}$ where $\alpha \neq 0$. The DE becomes
$y^{\prime \prime}-\alpha^{2} y=0$.

The general solution of this equation is $y(x)=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}$. Thus
$y^{\prime}(x)=c_{1} \alpha e^{\alpha x}-c_{2} \alpha e^{-\alpha x}$
$y^{\prime}(0)=c_{1} \alpha-c_{2} \alpha=0$ and $y^{\prime}(1)=c_{1} \alpha e^{\alpha}-c_{2} \alpha e^{-\alpha}=0$.

The first equation implies that $c_{1}=c_{2}$. Thus the second equation becomes $c_{1}\left(e^{\alpha}-e^{-\alpha}\right)=0$. Thus $c_{1}=0$, this tells us that $c_{2}=0$ also. Therefore $y=0$ is the only solution if $\lambda<0$.
II. Suppose $\lambda=0$. The DE becomes $y^{\prime \prime}=0$ which has the solution $y=c_{1} x+c_{2}$. The boundary conditions imply $c_{1}=0$, so that $y=c_{2}$. Thus $y=c_{2}$ where $c_{2} \neq 0$ is an eigenfunction corresponding to the eigenvalue $\lambda=0$.
III. Suppose $\lambda>0$. Let $\lambda=\beta^{2}$ where $\beta \neq 0$. The DE becomes
$y^{\prime \prime}+\beta^{2} y=0$.

The general solution of this equation is $y(x)=c_{1} \sin \beta x+c_{2} \cos \beta x$. Thus
$y^{\prime}(x)=c_{1} \beta \cos \beta x-c_{2} \beta \sin \beta x$

Now $y^{\prime}(0)=c_{1} \beta=0$ Since $\beta \neq 0$, we must have $c_{1}=0$. Thus $y(x)=c_{2} \cos \beta x$. Now $y^{\prime}(x)=-c_{2} \beta \sin \beta x$ and $y^{\prime}(1)=-c_{2} \beta \sin \beta=0$. For a nontrivial solution we must have $c_{2} \neq 0$. This means that $\sin \beta=0$ or $\beta=n \pi, n=1,2,3, \ldots$ The eigenvalues are therefore $\lambda=\beta^{2}=n^{2} \pi^{2}$ and the corresponding eigenfunctions are $y_{n}=a_{n} \cos n \pi x$, $n=1,2,3, \ldots$
We may also include the eigenfunction found in II above by allowing n to equal 0 . Hence all of the eigenfunctions are given by $y_{n}=a_{n} \cos n \pi x, n=0,1,2,3, \ldots$ with corresponding eigenvalues $\lambda=n^{2} \pi^{2}, n=0,1,2,3, \ldots$
Problem 2
a) (10 points)

Use separation of variables, $u(x, t)=X(x) T(t)$, to find ordinary differential equations which $X(x)$ and $T(t)$ must satisfy if $u(x, t)$ is to be a solution of

$$
11 t^{2} x^{9} u_{x x}-(t-3)(x+2) u_{t t t}=0
$$

Solution:
$u_{x}=X^{\prime} T, \quad u_{x x}=X^{\prime \prime} T, \quad u_{t}=X T^{\prime}$, etc.

Thus the given equation becomes

$$
\begin{aligned}
& 11 t^{2} x^{9} X^{\prime \prime} T-(t-3)(x+2) X T^{\prime \prime \prime}=0 \\
& \Rightarrow \\
& \qquad 11 x^{9} \frac{X^{\prime \prime}}{(x+2) X}=(t-3) \frac{T^{\prime \prime \prime}}{t^{2} T}=k, \quad k \text { a constant }
\end{aligned}
$$

This yields the two ODEs

$$
\begin{aligned}
11 x^{9} X^{\prime \prime}-k(x+2) X & =0 \\
(t-3) T^{\prime \prime \prime}-k t^{2} T & =0
\end{aligned}
$$

b) (15 points)

Solve:
P.D.E.: $u_{x x}-4 u_{t t}=0$
B.C.'s: $\quad u_{x}(0, t)=0 \quad u_{x}(\pi, t)=0$
I.C.'s: $u(x, 0)=0 \quad u_{t}(x, 0)=-8 \cos (4 x)+17 \cos (8 x)$

Solution:

Let $u(x, t)=X(x) T(t)$. Then differentiating and substituting in the PDE yields

$$
\begin{aligned}
& X^{\prime \prime} T=4 X T^{\prime \prime} \\
& \Rightarrow \quad \frac{X^{\prime \prime}}{X}=4 \frac{T^{\prime \prime}}{T}
\end{aligned}
$$

Using the argument that the left hand side is purely a function of x and the right hand side is purely a function of t, and the only way that they can be equal is if they are equal to a constant, we get

$$
\frac{X^{\prime \prime}}{X}=4 \frac{T^{\prime \prime}}{T}=k \quad k \text { a constant }
$$

This yields the two ordinary differential equations

$$
X^{\prime \prime}-k X=0 \quad \text { and } \quad T^{\prime \prime}-\frac{1}{4} k T=0
$$

The boundary condition $u_{x}(0, t)=0$ implies, since $u_{x}(x, t)=X^{\prime}(x) T(t)$ that
$X^{\prime}(0) T(t)=0$. We cannot have $T(t)=0$, since this would imply that $u(x, t)=0$. Thus $X^{\prime}(0)=0$. Similarly, the boundary condition $u_{x}(\pi, t)=0$ leads to $X^{\prime}(\pi)=0$.

We now have the following boundary value problem for $X(x)$:
$X^{\prime \prime}-k X=0 \quad X^{\prime}(0)=X^{\prime}(\pi)=0$

This boundary value problem is very similar to the one given in Problem 1(c) above. (Its solution was discussed in the slide show Eigenvalues and Eigenfunctions for Boundary Value Problems.) The solution is
$k=-n^{2} \quad X_{n}(x)=a_{n} \cos n x \quad n=1,2,3, \ldots$

Substituting the values of k into the equation for $T(t)$ leads to

$$
T^{\prime \prime}+\frac{n^{2}}{4} T=0
$$

which has the solution $T_{n}(t)=b_{n} \sin \frac{n t}{2}+c_{n} \cos \frac{n t}{2}, n=1,2,3, \ldots$

The initial condition $u(x, 0)=0$ implies $X(x) T(0)=0$ so that $T(0)=0$. Thus $c_{n}=0$.

We now have the solutions

$$
u_{n}(x, t)=A_{n} \cos n x \sin \frac{n t}{2} \quad n=1,2,3, \ldots
$$

Since the boundary conditions and the equation are linear and homogeneous, it follows that

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} A_{n} \cos n x \sin \frac{n t}{2}
$$

satisfies the PDE, the boundary conditions, and the first initial condition. Since

$$
u_{t}(x, t)=\sum_{n=1}^{\infty} A_{n}\left(\frac{n}{2}\right) \cos n x \cos \frac{n t}{2}
$$

The last initial condition leads to

$$
u_{t}(x, 0)=-8 \cos (4 x)+17 \cos (8 x)=\sum_{n=1}^{\infty} A_{n}\left(\frac{n}{2}\right) \cos n x .
$$

Matching the cosine terms on both sides of this equation leads to
$A_{4}\left(\frac{4}{2}\right)=-8$ so that $A_{4}=-4$ and $A_{8}\left(\frac{8}{2}\right)=17$ so that $A_{8}=\frac{17}{4}$. All of the other constants must be zero, since there are no cosine terms on the left to match with. Thus

$$
u(x, t)=-4 \cos 4 x \sin \frac{4 t}{2}+\frac{17}{4} \cos 8 x \sin \frac{8 t}{2}=-4 \cos 4 x \sin 2 t+\frac{17}{4} \cos 8 x \sin 4 t
$$

Ma 227 Final Exam 97F

1. a) Find the first four non-zero terms on the Fourier cosine series of

$$
f(x)= \begin{cases}3 & 0<x<1 \\ 0 & 1<x<2\end{cases}
$$

Cosine Formula: $\quad f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}$

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

$a_{0}=1\left[\int_{0}^{1} 3 d x+\int_{1}^{2} 0 d x\right]=3$
$a_{n}=\int_{0}^{1} 3 \cos \frac{n \pi x}{2} d x+\int_{1}^{2} 0 \cos \frac{n \pi x}{2} d x=\left.\frac{6}{n \pi} \sin \frac{n \pi x}{2}\right|_{0} ^{1}=\frac{6}{n \pi} \sin \frac{n \pi}{2}$

$$
a_{n}=\left\{\begin{array}{lc}
\frac{6}{n \pi}(-1)^{\frac{n-1}{2}} & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
$$

Thus $f(x)=\frac{3}{2}+\sum_{n=1}^{\infty} \frac{6}{n \pi} \sin \frac{n \pi}{2} \cos \frac{n \pi x}{2}=\sum_{n=1}^{9} \frac{6(-1)^{n+1}}{(2 n-1) \pi} \cos \frac{(2 n-1) \pi x}{2}$
computing the first few terms:
$f(x)=\frac{3}{2}+\frac{6}{\pi} \cos \frac{1}{2} \pi x-\frac{2}{\pi} \cos \frac{3}{2} \pi x+\frac{6}{5 \pi} \cos \frac{5}{2} \pi x-\frac{6}{7 \pi} \cos \frac{7}{2} \pi x+\frac{2}{3 \pi} \cos \frac{9}{2} \pi x$

1. b) Sketch the graph of $f(x)$ on $-4<x<6$

2. c) Solve the boundary value problem:

$$
y^{\prime \prime}(x)-y(x)=x ; \quad y(0)=0 ; \quad y^{\prime}(1)=1
$$

homogeneous solution: $\quad y^{\prime \prime}(x)-y(x)=0$
characteristic equation: $r^{2}-1=0 \Rightarrow r= \pm 1$
$\left.\begin{array}{l}y(x)=c_{1} e^{x}+c_{2} e^{-x} \\ y(x)=A x+B \\ \text { particular solution: } \\ y^{\prime}(x)=A \\ y^{\prime \prime}(x)=0\end{array}\right\} \Rightarrow A=-1 \Rightarrow y(x)=-x$
general solution: $\quad y(x)=c_{1} e^{x}+c_{2} e^{-x}-x$ then $y^{\prime}(x)=c_{1} e^{x}-c_{2} e^{-x}-1$

$$
\begin{aligned}
\text { B.C. } \Rightarrow & y(0)=c_{1} e^{0}+c_{2} e^{-0}-0=0 \Rightarrow c_{1}=-c_{2} \\
& \text { and } y^{\prime}(1)=c_{1} e^{1}-c_{2} e^{-1}-1=1 \Rightarrow c_{1} e-c_{2} e^{-1}=2
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}=-c_{2} \\
& c_{1} e-c_{2} e^{-1}=2
\end{aligned}, \text { Solution is : }\left\{c_{2}=-\frac{2}{e+e^{-1}}, c_{1}=\frac{2}{e+e^{-1}}\right\}
$$

So

$$
y(x)=\frac{2}{e+e^{-1}} e^{x}-\frac{2}{e+e^{-1}} e^{-x}-x
$$

2. a) Use separation of variables, $u(r, \theta)=R(r) T(\theta)$, to find ordinary differential equations which $R(r)$ and $T(\theta)$ must satisfy if $u(r, \theta)$ is to be a solution of

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

Do not solve these equations.
Solution: Let $u(r, \theta)=R(r) T(\theta)$ then
$u_{r}=R^{\prime}(r) T(\theta) \quad u_{r r}=R^{\prime \prime}(r) T(\theta) \quad u_{\theta \theta}=R(r) T^{\prime \prime}(\theta)$
and $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ becomes

$$
\begin{aligned}
& R^{\prime \prime}(r) T(\theta)+\frac{1}{r} R^{\prime}(r) T(\theta)+\frac{1}{r^{2}} R(r) T^{\prime \prime}(\theta)=0 \\
& r^{2} R^{\prime \prime}(r) T(\theta)+r R^{\prime}(r) T(\theta)=-R(r) T^{\prime \prime}(\theta) \\
& \frac{r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)}{-R(r)}=\frac{T^{\prime \prime}(\theta)}{T(\theta)}=k
\end{aligned}
$$

since R and T are independent
resulting in the equations

$$
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)+k R(r)=0
$$

and

$$
T^{\prime \prime}(\theta)-k T(\theta)=0
$$

2. b)Consider the non-homogeneous problem
P.D.E.: $u_{x x}=9 u_{t}$
B.C.'s: $u_{x}(0, t)=0 \quad u(1, t)=2$
I.C.: $u(x, 0)=-3 \cos \frac{7 \pi}{2} x+2$
i) (5 points)

Let $v(x, t)=u(x, t)-2$ and show that $v(x, t)$ satisfies the homogeneous problem

$$
\text { P.D.E.: } v_{x x}=9 v_{t}
$$

B.C.: $\quad v_{x}(0, t)=0 \quad v(1, t)=0$
I.C.: $\quad v(x, 0)=-3 \cos \frac{7 \pi}{2} x$

Solution to i) $\quad u_{x x}(x, t)=v_{x x}(x, t) \quad u_{x}(x, t)=v_{x}(x, t)$

$$
\begin{aligned}
& u_{t t}(x, t)=v_{t t}(x, t) \quad u_{t}(x, t)=v_{t}(x, t) \\
& u(1, t)=2 \text { and } u(x, t)-2=v(x, t) \Rightarrow v(1, t)=0 \\
& u_{x}(0, t)=0 \Rightarrow v_{x}(0, t)=0 \\
& u(x, 0)=-3 \cos \frac{7 \pi}{2}+2 \text { and } u(x, t)-2=v(x, t) \Rightarrow v(x, 0)=-3 \cos \frac{7 \pi}{2}
\end{aligned}
$$

2. b) ii) (10 points)

Solve the above problem for $v(x, t)$.
Solution to ii) Let $v(x, t)=X(x) T(t)$

$$
\text { then } X^{\prime \prime} T=9 X T^{\prime} \Rightarrow \frac{X^{\prime \prime}}{X}=9 \frac{T^{\prime}}{T}=k
$$

resulting in the ordinary differential equations:

$$
X^{\prime \prime}-k X=0 \quad \text { and } \quad T^{\prime}-\frac{k}{9} T=0
$$

Boundary Conditions become: $X^{\prime}(0) T(t)=0$ and $X(1) T(t)=0$

$$
\Rightarrow X^{\prime}(0)=0 \text { and } X(1)=1
$$

Solving the differential equation $X^{\prime \prime}-k X=0$ consider all values of k $k<0$ let $k=-u^{2} ; \quad u>0$
$X^{\prime \prime}+u^{2} X=0$ has the solution: $X(x)=c_{1} \cos u x+c_{2} \sin u x$
and $X^{\prime}(x)=-c_{1} u \sin u x+c_{2} u \cos u x$
B.C. $\Rightarrow X(1)=c_{1} \cos u+c_{2} \sin u=0$ and $X^{\prime}(0)=c_{2} u=0$
$\Rightarrow c_{2}=0$ thus $c_{1} \cos u=0 \Rightarrow u_{n}=\frac{(2 n-1) \pi}{2} \quad n=1,2, \ldots$

$$
\begin{array}{ll}
& \Rightarrow k_{n}=-\frac{(2 n-1)^{2} \pi^{2}}{4} \quad n=1,2, \ldots \\
\text { so } & X_{n}(x)=c_{n} \cos \frac{(2 n-1) \pi}{2} x
\end{array}
$$

$k=0 \Rightarrow X^{\prime \prime}=0$ which has the solution: $X(x)=c_{1} X+c_{2}$ and $X^{\prime}(x)=c_{1}$
B.C. $\Rightarrow X(1)=c_{1}+c_{2}=0$ and $X^{\prime}(0)=c_{1}=0 \Rightarrow c_{2}=0$
thus $X(x) \equiv 0$ is the trivial solution.
$k>0$ let $k=u^{2} ; u>0$
$X^{\prime \prime}-u^{2} X=0$ has the solution: $X(x)=c_{1} e^{u x}+c_{2} e^{-u x}$
and $X^{\prime}(x)=c_{1} u e^{u x}-c_{2} u e^{-u x}$
B.C. $\Rightarrow X^{\prime}(0)=c_{1} u-c_{2} u=0 \Rightarrow c_{1}=c_{2}$
and $X(1)=c_{1} e^{u}+c_{2} e^{-u}=0 \Rightarrow c_{1} e^{u}+c_{1} e^{-u}=0 \Rightarrow c_{1}\left(e^{u}+e^{-u}\right)=0$
$\Rightarrow c_{1}=c_{2}=0$ thus $X(x) \equiv 0$ is the trivial solution.
Using the non-trivial solution $k_{n}=-\frac{(2 n-1)^{2} \pi^{2}}{4} \quad X_{n}(x)=c_{n} \cos \frac{(2 n-1) \pi}{2} x$, the equation $T^{\prime}-\frac{k}{9} T=0$ becomes $T^{\prime}+\frac{(2 n-1)^{2} \pi^{2}}{36} T=0$
solving by separating $\frac{T^{\prime}}{T}=-\frac{(2 n-1)^{2} \pi^{2}}{36} \Rightarrow \int \frac{T^{\prime}}{T}=-\int \frac{(2 n-1)^{2} \pi^{2}}{36}$
$\Rightarrow \ln T=-\frac{(2 n-1)^{2} \pi^{2}}{36} t+c \Rightarrow T_{n}(t)=c_{n} e^{-\frac{(2 n-1)^{2} \pi^{2}}{36} t}$
Therefore $v_{n}(x, t)=X_{n}(x) T_{n}(t)$
$v_{n}(x, t)=c_{n} \cos \frac{(2 n-1) \pi x}{2} e^{-\frac{(2 n-1)^{2} \pi^{2}}{36} t}$
so $v(x, t)=\sum_{n=1}^{\infty} c_{n} \cos \frac{(2 n-1) \pi x}{2} e^{-\frac{(2 n-1)^{2} \pi^{2}}{36} t}$
Using I.C. to compute coefficients:

$$
v(x, 0)=\sum_{n=1}^{\infty} c_{n} \cos \frac{(2 n-1) \pi x}{2}=-3 \cos \frac{7 \pi x}{2}
$$

by equating coefficients: $c_{1}=0, c_{2}=0, c_{3}=-3, c_{4}=0, \ldots$

$$
v(x, t)=-3 \cos \frac{7 \pi x}{2} e^{-\frac{49 \pi^{2}}{36} t}
$$

is the solution.
2. b)iii) (2 points)

Now use the results of b) i) and ii) to find $u(x, t)$.
Solution to iii)

$$
u(x, t)=-3 \cos \frac{7 \pi x}{2} e^{-\frac{49 \pi^{2}}{36} t}+2
$$

Ma 227 Final Exam 98S

Problem 1

a) (8 points)

Find the first four nonzero terms of the Fourier cosine series of
$f(x)=\left\{\begin{array}{cl}-1 & 0<x<\frac{\pi}{2} \\ 0 & \frac{\pi}{2}<x<\pi\end{array}\right.$
Solution
If $f(x)$ is a function defined on $[0, L]$, then its Fourier cosine expansion is given by
$f(x)=\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)$
where $a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \quad$ and $a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \quad n=1,2,3, \ldots$
Here $L=\pi$ so that $f(x)=\sum_{n=1}^{\infty} a_{n} \cos (n x), a_{0}=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x$ and $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x$.

Thus $a_{0}=\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}}(-1) d x+\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}}(0) d x=-\frac{1}{2}$. Also,
$a_{n}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}(-1) \cos n x d x=-\frac{2}{n \pi}[\sin n x]_{0}^{\frac{\pi}{2}}=-\frac{2}{n \pi}\left[\sin \frac{n \pi}{2}\right]$
Therefore
$a_{1}=-\frac{2}{\pi}, \quad a_{2}=0, \quad a_{3}=+\frac{2}{3 \pi}, \quad a_{4}=0, \quad a_{5}=-\frac{2}{5 \pi}, \quad a_{6}=0, \quad a_{7}=+\frac{2}{7 \pi}$

Hence
$f(x)=-\frac{1}{2}--\frac{2}{\pi} \cos x+0 \cdot \cos 2 x+\frac{2}{3 \pi} \cos 3 x+0 \cdot \cos 4 x-\frac{2}{5 \pi} \cos 5 x+0 \cdot \cos 6 x+\frac{2}{7 \pi} \cos 7 x$
b) (8 points)

Sketch the graph of the function to which the Fourier series in (a) converges on $-2 \pi<x<3 \pi$.

c) (9 points)

Find the eigenvalues and eigenfunctions for the problem
$y^{\prime \prime}+\lambda y=0 ; \quad y(0)=0 ; \quad y(2)=0$
Be sure to check the cases $\lambda<0, \lambda=0$, and $\lambda>0$.
I. Consider the case $\lambda<0$ first. Let $\lambda=-\alpha^{2}$ where $\alpha \neq 0$. The DE becomes
$y^{\prime \prime}-\alpha^{2} y=0$.
The general solution of this equation is $y(x)=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}$. Thus
$y(0)=c_{1}+c_{2}=0$ and $y(2)=c_{1} e^{2 \alpha}+c_{2} e^{-2 \alpha}=0$.
The first equation implies that $c_{1}=-c_{2}$. Thus the second equation becomes $c_{1}\left(e^{2 \alpha}+e^{-2 \alpha}\right)=0$. Thus $c_{1}=0$; this tells us that $c_{2}=0$ also. Therefore $y=0$ is the only solution if $\lambda<0$. Hence there are no negative eigenvalues.
II. Suppose $\lambda=0$. The DE becomes $y^{\prime \prime}=0$ which has the solution $y=c_{1} x+c_{2}$. The boundary conditions imply $y(0)=c_{1}=0$, so that $y=c_{2}$. But $y(2)=c_{2}=0$ so that $y=0$. Hence there is no eigenfunction corresponding to the eigenvalue $\lambda=0$.
III. Suppose $\lambda>0$. Let $\lambda=\beta^{2}$ where $\beta \neq 0$. The DE becomes
$y^{\prime \prime}+\beta^{2} y=0$.
The general solution of this equation is $y(x)=c_{1} \sin \beta x+c_{2} \cos \beta x$. Thus

Now $y(0)=c_{2}=0$ Thus $y(x)=c_{2} \sin \beta x$. Now $y(2)=c_{2} \sin 2 \beta=0$. For a nontrivial solution we must have $c_{2} \neq 0$. This means that $\sin 2 \beta=0$ or $\beta=\frac{n \pi}{2}, n=1,2,3, \ldots$ The eigenvalues are therefore $\lambda=\beta^{2}=\frac{n^{2} \pi^{2}}{4}$ and the corresponding eigenfunctions are $y_{n}=a_{n} \sin \frac{n \pi}{2} x, n=1,2,3, \ldots$

Problem 2

a) (10 points)

Use separation of variables, $u(x, t)=X(x) T(t)$, to find ordinary differential equations which $X(x)$ and $T(t)$ must satisfy if $u(x, t)$ is to be a solution of

$$
5 x^{5} t^{2} u_{t t}+(t+3)^{5}(x+5)^{2} u_{x x}=0
$$

Do not solve these equations.
Solution:
$u_{x}=X^{\prime} T, \quad u_{x x}=X^{\prime \prime} T, \quad u_{t}=X T^{\prime}, u_{t t}=X T^{\prime \prime}$
Thus the given equation becomes
$15 t^{2} x^{5} X T^{\prime \prime}+(t+3)^{5}(x+5)^{2} X^{\prime \prime} T=0$
$\Rightarrow \quad 15 x^{5} \frac{X}{(x+5)^{2} X^{\prime \prime}}=-(t+3)^{5} \frac{T}{t^{2} T^{\prime \prime}}=k, \quad k$ a constant

This yields the two ODEs

$$
\begin{aligned}
& 15 x^{5} X-k(x+5)^{2} X^{\prime \prime}=0 \\
& \quad(t+3)^{5} T+k t^{2} T^{\prime \prime}=0
\end{aligned}
$$

b) (15 points)

Solve:

$$
\begin{aligned}
& \text { P.D.E.: } u_{x x}=4 u_{t} \\
& \text { B.C.s: } u(0, t)=u(2, t)=0 \\
& \text { I.C.: } u(x, 0)=-3 \sin \frac{\pi x}{2}+23 \sin \pi x-4 \sin 2 \pi x
\end{aligned}
$$

Let $u(x, t)=X(x) T(t)$. Then differentiating and substituting in the PDE yields
$X^{\prime \prime} T=4 X T^{\prime}$
$\Rightarrow \quad \frac{X^{\prime \prime}}{X}=4 \frac{T^{\prime}}{T}$
Using the argument that the left hand side is purely a function of x and the right hand side is purely a function of t, and the only way that they can be equal is if they are equal to a constant, we get

$$
\frac{X^{\prime \prime}}{X}=4 \frac{T^{\prime}}{T}=k \quad k \text { a constant }
$$

This yields the two ordinary differential equations

$$
X^{\prime \prime}-k X=0 \quad \text { and } \quad T^{\prime}-\frac{1}{4} k T=0
$$

The boundary condition $u(0, t)=0$ implies that $X(0) T(t)=0$. We cannot have $T(t)=0$, since this would imply that $u(x, t)=0$. Thus $X(0)=0$. Similarly, the boundary condition $u(2, t)=0$ leads to $X(2)=0$.

We now have the following boundary value problem for $X(x)$:

$$
X^{\prime \prime}-k X=0 \quad X(0)=X(2)=0
$$

This boundary value problem is the one given in Problem 1(c) above with $k=-\lambda$. The solution is

$$
k=-\left(\frac{n \pi}{2}\right)^{2} \quad X_{n}(x)=a_{n} \sin \frac{n \pi}{2} x \quad n=1,2,3, \ldots
$$

Substituting the values of k into the equation for $T(t)$ leads to

$$
T^{\prime}+\frac{n^{2} \pi^{2}}{16} T=0
$$

which has the solution $T_{n}(t)=c_{n} e^{-\frac{n^{2} \pi^{2} t}{16}}, n=1,2,3, \ldots$

We now have the solutions

$$
u_{n}(x, t)=A_{n} \sin \frac{n \pi}{2} x e^{-\frac{n^{2} \pi^{2} t}{16}} \quad n=1,2,3, \ldots
$$

Since the boundary conditions and the equation are linear and homogeneous, it follows that

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{2} x e^{-\frac{n^{2} \pi^{2} t}{16}}
$$

satisfies the PDE and the boundary conditions. Since

$$
u(x, 0)=-3 \sin \frac{\pi x}{2}+23 \sin \pi x-4 \sin 2 \pi x=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{2} x
$$

Matching the cosine terms on both sides of this equation leads to
$A_{1}=-3 \quad A_{2}=23$ and $A_{4}=-4$. All of the other constants must be zero, since there are no sine terms on the left to match with them. Thus

$$
u(x, t)=-3 \sin \frac{\pi x}{2} e^{-\frac{\pi^{2}}{16} t}+23 \sin \pi x e^{-\frac{\pi^{2}}{4} t}-4 \sin 2 \pi x e^{-\pi^{2} t}
$$

