MA 221 Homework Solutions Due date: February 25, 2014

Section 4.5 pg. 187-188 1, 2b, 2b, 6, 8, 17, <u>21, 23, 27, 29</u>

(Underlined Problems are to be handed in)

- 1.) Given that $y_1(t) = (1/4) \sin 2t$ is a solution to $y'' + 2y' + 4y = \cos 2t$ and that $y_2(t) = t/4 1/8$ is a solution to y'' + 2y' + 4y = t, use the superposition principle to find solutions of
 - (b) $y'' + 2y' + 4y = 2t 3\cos 2t$

Since the right hand side of this last equation is twice the right hand side of the second equation given plus -3 times the right hand side of the first equation given a particular solution for (b) is

$$2y_2 - 3y_1 = \frac{t}{2} - \frac{1}{4} - \frac{3}{4}\sin 2t$$

2b) Given that $y_1(t) = \cos t$ is a solution to $y'' - y' + y = \sin t$ and that $y_2(t) = e^{2t/3}$ is a solution to $y'' - y' + y = e^{3t}$, use the superposition principle to find a solutions of

$$y'' - y' + y = \sin t - 3e^{2t}$$

$$y_p = \cos t - e^{2t}$$

In problems 6 & 8 a nonhomogeneous equation and a particular solution are given. Find a general solution for the equation.

6.)
$$\theta'' - \theta' - 2\theta = 1 - 2t$$
 $\theta_p(t) = t - 1$

The homogeneous equation is

$$\theta'' - \theta' - 2\theta = 0$$

Thus
$$r^2 - r - 2 = (r - 2)(r + 1) = 0$$
 so $r = 2, -1$

$$y_h = c_1 e^{2t} + c_2 e^{-t}$$

Therefore by the superposition principle:

$$y = \theta_h + \theta_p = t - 1 + c_1 e^{2t} + c_2 e^{-t}$$

8.)
$$y'' = 2y' - y + 2e^x$$
 $y_p(x) = x^2 e^x$

The homogeneous equation is

$$y'' - 2y' + y = 0$$

Thus
$$r^2 - 2r + 1 = (r - 1)^2 = 0$$
 so $r = 1$ is a repeated root and

$$y_h = c_1 e^x + c_2 x e^x$$

Therefore

$$y = y_h + y_p = c_1 e^x + c_2 x e^x + x^2 e^x$$

17.)
$$y'' - y = -11t + 1$$

The indicial equation is $r^2 - 1 = 0$ so $r = \pm 1$ and

$$y_h = c_1 e^t + c_2 e^{-t}$$

Let

$$y_p = At + B$$

$$y'_p = A$$

$$y''_p = 0$$

The DE implies

$$-At - B = -11t + 1$$

so A = 11, B = -1 and

$$y_p = 11t - 1$$

Thus

$$y = y_h + y_p = c_1 e^t + c_2 e^{-t} + 11t - 1$$

In problem 21, find a general solution to the differential equation.

$$21.$$
) $y''(\theta) + 2y'(\theta) + 2y(\theta) = e^{-\theta}\cos\theta$

Let
$$p(r) = r^2 + 2r + 2 = 0$$

$$r = -1 \pm i$$

$$y_h(\theta) = c_1 e^{-\theta} \cos \theta + c_2 e^{-\theta} \sin \theta = (c_1 \cos \theta + c_2 \sin \theta) e^{-\theta}$$

We now find a particular solution.

Method 1:

$$y_p(\theta) = \theta(A\cos\theta + B\sin\theta)e^{-\theta}$$

$$y_p'(\theta) = (A\cos\theta + B\sin\theta)e^{-\theta} + \theta[(A\cos\theta + B\sin\theta)e^{-\theta}]'$$

$$y_{p}^{\prime\prime}(\theta) = 2[(A\cos\theta + B\sin\theta)e^{-\theta}]^{\prime\prime} + \theta[(A\cos\theta + B\sin\theta)e^{-\theta}]^{\prime\prime} = 2[(B-A)\cos\theta - (B+A)\sin\theta]$$

$$y_{p}^{\prime\prime}(\theta) = 2[(A\cos\theta + B\sin\theta)e^{-\theta}]^{\prime\prime} + \theta[(A\cos\theta + B\sin\theta)e^{-\theta}]^{\prime\prime} = 2[(B-A)\cos\theta - (B+A)\sin\theta]$$

$$y_{p}^{\prime\prime}(\theta) = 2[(B-A)\cos\theta - (B+A)\sin\theta]e^{-\theta} + 2(A\cos\theta + B\sin\theta)e^{-\theta} = 2(B\cos\theta - A\sin\theta)$$

$$A = 0, B = 1/2, \text{ so } y_{p}(\theta) = (1/2)\theta e^{-\theta}\sin\theta$$

Method 2: Consider a companion $v''(\theta) + 2v'(\theta) + 2v(\theta) = e^{-\theta}\sin\theta$. Multiply this equation by *i* and add it to the original equation. Letting w = y + iv, we have

$$w'' + 2w' + 2w = e^{-\theta}(\cos\theta + i\sin\theta) = e^{-\theta}e^{i\theta} = e^{(i-1)\theta}$$

Then
$$p(i-1) = (i-1)^2 + 2(i-1) + 2 = -2i + 2i - 1 + 2 = 0$$
. $p'(r) = 2r + 2$ so $p(i-1) = 2(i-1) + 2 = 2i$

Therefore

$$w_p = -\frac{\theta e^{(i-1)\theta}}{2} = \frac{\theta e^{-\theta}(\cos\theta + i\sin\theta)}{2i} = -\frac{1}{2}\theta e^{-\theta}(i\cos\theta - \sin\theta)$$

Thus

$$y_p = \operatorname{Re} w_p = \frac{1}{2} \theta e^{-\theta} \sin \theta$$

Therefore

$$y = y_h + y_p = c_1 e^{-\theta} \cos \theta + c_2 e^{-\theta} \sin \theta + \frac{1}{2} \theta e^{-\theta} \sin \theta$$

23.)
$$y' - y = 1$$
, $y(0) = 0$

This is a first order linear equation. Multiply by $e^{\int -dx} = e^{-x}$. The DE becomes

$$\frac{d}{dx}(e^{-x}y) = e^{-x}$$

SO

$$e^{-x}y = -e^{-x} + c$$

or

$$y = -1 + ce^x$$

Then

$$y(0) = -1 + c = 0$$

and c = 1

$$y = -1 + e^x$$

In problems 27 and 29, find the solution to the Initial Value Problem.

27.)
$$y''(x) - y'(x) - 2y(x) = \cos x - \sin 2x$$
; $y(0) = -7/20$, $y'(0) = 1/5$
 $p(r) = r^2 - r - 2 = 0 = (r - 2)(r + 1) \Rightarrow r = -1; r = 2$

$$p(r) = r^2 - r - 2 = 0 = (r - 2)(r + 1) \Rightarrow r = -1; r = 2$$

 $y_h(x) = c_1 e^{-x} + c_2 e^{2x}$

To find a particular solution for $\cos x$ we consider the two equations

$$y'' - y' - 2y = \cos x$$

$$v'' - v' - 2v = \sin x$$

$$v'' - v' - 2v = \sin x$$

Multiply the second equation by i and add it to the first equation and let w = y + iv to get $w'' - w' - 2w = \cos\theta + i\sin\theta = e^{i\theta}$

Since $p(i) = -1 - i - 2 = -3 - i \neq 0$ we have that

$$w_p = \frac{ke^{a\theta}}{p(\alpha)} = \frac{e^{i\theta}}{-3 - i} = -\frac{1}{3 + i} \frac{(3 - i)}{(3 - i)} (\cos \theta + i \sin \theta)$$
$$= \frac{i - 3}{10} (\cos \theta + i \sin \theta)$$

Therefore y_{p_1} =real part of $w_p = -(3/10)\cos x - (1/10)\sin x$

To find a particular solution for $-\sin 2x$ we consider the two equations

$$y'' - y' - 2y = -\sin 2x$$

$$v'' - v' - 2v = -\cos 2x$$

Multiply the second equation by i and add it to the first equation and let w = v + iy to get $w'' - w' - 2w = -\cos 2x - i\sin 2x = -e^{2ix}$

Since $p(2i) = -4 - 2i - 2 = -6 - 2i \neq 0$ we have that

$$w_p = \frac{ke^{\alpha\theta}}{p(\alpha)} = \frac{-e^{2ix}}{-6 - 2i} = \frac{1}{6 + 2i} \frac{(6 - 2i)}{(6 - 2i)} (\cos 2x + i \sin 2x)$$
$$= \frac{2(3 - i)}{40} (\cos 2x + i \sin 2x)$$

Therefore y_{p_2} =imaginary part of $w_p = -(1/20)\cos 2x + (3/20)\sin 2x$

$$y = y_h + y_{p_1} + y_{p_2} = c_1 e^{-x} + c_2 e^{2x} - \frac{3}{10} \cos x - \frac{1}{10} \sin x - \frac{1}{20} \cos 2x + \frac{3}{20} \sin 2x$$

Method 2:

For the equation $y'' - y' - 2y = \cos x$

$$y_{p,1}(x) = A\cos x + B\sin x$$

$$y'' - y' - 2y = (-A\cos x - B\sin x) - (-A\sin x + B\cos x) - 2(A\cos x + B\sin x)$$

= (-3A - B)\cos x + (A - 3B)\sin x = \cos x

$$A = -3/10; B = -1/10$$

So,
$$y_{p_1}(x) = -(3/10)\cos x - (1/10)\sin x$$

For the equation $y'' - y' - 2y = -\sin 2x$

$$y_{p_2}(x) = A\cos 2x + B\sin 2x$$

$$y'' - y' - 2y = (-4A\cos 2x - 4B\sin 2x) - (-2A\sin 2x + 2B\cos 2x) - 2(A\cos 2x + B\sin 2x)$$
$$= (-6A - 2B)\cos 2x + (2A - 6B)\sin 2x = -\sin 2x$$

$$A = -1/20; B = +3/20$$

So,
$$y_{p_2}(x) = -(1/20)\cos 2x + (3/20)\sin 2x$$

so again we have

$$y = y_h + y_{p_1} + y_{p_2} = c_1 e^{-x} + c_2 e^{2x} - \frac{3}{10} \cos x - \frac{1}{10} \sin x - \frac{1}{20} \cos 2x + \frac{3}{20} \sin 2x$$
$$y' = -c_1 e^{-x} + 2c_2 e^{2x} + \frac{3}{10} \sin x - \frac{1}{10} \cos x + \frac{1}{10} \sin 2x + \frac{3}{10} \cos 2x$$

Next, we find c_1 and c_2 such that the initial conditions are satisfied.

$$y(0) = c_1 + c_2 - \frac{3}{10} - \frac{1}{20} = -\frac{7}{20}$$
$$y'(0) = -c_1 + 2c_2 - \frac{1}{10} + \frac{3}{10} = \frac{1}{5}$$

Thus

$$c_1 + c_2 = 0$$
$$-c_1 + 2c_2 = 0$$

Hence
$$c_1 = c_2 = 0$$

With these constants the solution is,

$$y(x) = -\frac{3}{10}\cos x - \frac{1}{10}\sin x - \frac{1}{20}\cos 2x + \frac{3}{20}\sin 2x$$

29.)
$$y''(\theta) - y(\theta) = \sin \theta - e^{2\theta} y(0) = 1, y'(0) = -1$$

29.) $y''(\theta) - y(\theta) = \sin \theta - e^{2\theta} \ y(0) = 1, \ y'(0) = -1$ The characteristic equation is $p(r) = r^2 - 1 = 0$, so $r = \pm 1$ and $y_h = c_1 e^{\theta} + c_2 e^{-\theta}$.

Method 1:

To find a particular solution for $\sin \theta$ we consider the two equations

$$v'' - v = \cos\theta$$

$$y'' - y = \sin \theta$$

Multiply the second equation by i and add it to the first equation and let w = v + iy to get $w'' - w = \cos\theta + i\sin\theta = e^{i\theta}$

Since
$$p(i) = -2 \neq 0$$
 we have that $w_p = \frac{ke^{a\theta}}{p(\alpha)} = \frac{e^{i\theta}}{-2} = -\frac{1}{2}(\cos\theta + i\sin\theta)$

Therefore y_{p_1} =imaginary part of $w_p = -\frac{1}{2}\sin\theta$

To find a particular solution for $-e^{2\theta}$ note that $p(2) = (2)^2 - 1 = 3$ so $y_{p_2} = \frac{-e^{2\theta}}{3}$

A general solution is then

$$y = y_h + y_{p_1} + y_{p_2} = c_1 e^{\theta} + c_2 e^{-\theta} - \frac{1}{2} \sin \theta - \frac{e^{2\theta}}{3}$$

Method 2:

For the equation $y'' - y = \sin \theta$

$$y_{p,1} = A\cos\theta + B\sin\theta$$

$$(-A\cos\theta - B\sin\theta) - (A\cos\theta + B\sin\theta) = -2A\cos\theta - 2B\sin\theta = \sin\theta$$

$$-2A = 0$$

$$-2B = 1$$

$$A = 0, B = -1/2$$

So,
$$y_{p,1} = -(1/2) \sin \theta$$

For the equation $y'' - y = e^{2\theta}$

$$y_{p,2} = Ae^{\bar{2}\theta}$$

$$3Ae^{2\theta} = e^{2\theta} \Rightarrow A = 1/3$$

$$y_{p,2} = (1/3)e^{2\theta}$$

$$y = y_h + y_{p_1} + y_{p_2} = c_1 e^{\theta} + c_2 e^{-\theta} - \frac{1}{2} \sin \theta - \frac{e^{2\theta}}{3}$$

The initial conditions imply since $y' = c_1 e^{\theta} - c_2 e^{-\theta} - \frac{1}{2} \cos \theta - \frac{2}{3} e^{2\theta}$

$$y(0) = c_1 + c_2 - \frac{1}{3} = 1$$

$$y(0) = c_1 + c_2 - \frac{1}{3} = 1$$

 $y'(0) = c_1 - c_2 - \frac{1}{2} - \frac{2}{3} = -1$

$$c_1 + c_2 = \frac{4}{3}$$
$$c_1 - c_2 = \frac{1}{6}$$

$$c_1 - c_2 = \frac{1}{6}$$

Hence
$$c_1 = \frac{3}{4}$$
, $c_2 = \frac{7}{12}$ Thus

Hence
$$c_1 = \frac{3}{4}$$
, $c_2 = \frac{7}{12}$ Thus $y = \frac{3}{4}e^{\theta} + \frac{7}{12}e^{-\theta} - \frac{1}{2}\sin\theta - \frac{e^{2\theta}}{3}$