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(Underlined problems are to be handed in)

In problems 1, 3, 5 and 7 Determine all the singular points of the given differential
equations.

1.) x  1y ′′ − x2y ′  3y  0
Dividing the entire equation by x  1 yields

y ′′ − x2

x  1
y ′  3

x  1
y  0

We then see:

Py  − x2

x  1
Qy  3

x  1

These are rational functions and so they are analytical everywhere except, perhaps, at zeros
of their denominators. Solving x  1  0 we find that x  −1 which is at a point of infinite
discontinuity for both functions. Consequently, x  −1 is the only singular point of the given
equation.

3
̄
.) 2 − 2y ′′  2y ′  siny  0

Writing the equation in standard form yields

y′′  2
2 − 2

y′  sin
2 − 2

y  0

and

P  2
2 − 2

Q  sin
2 − 2

The singularities are therefore at    2 .
Find at least the first four nonzero terms in a power series expansion about x  0 for a general solution to the

given differential equation.

5
̄
.) t2 − t − 2x ′′  t  1x ′ − t − 2x  0

x ′′  t1
t2−t−2

x ′ − t−2
t2−t−2

x  0

pt  t1
t2−t−2

 t1
t1t−2

qt  t−2
t2−t−2

 t−2
t1t−2

The point t  −1 is a removable singularity for pt since, for t ≠ −1, we can cancel t  1
term in the numerator and denominator, and so pt becomes analytic at t  −1 if we set

1



p−1 : limt→−1 pt  limt→−1
1

t−2  − 1
3

At the point t  2,pt has infinite discontinuity. Thus pt is analytic everywhere except
t  2. Similarly, qt is analytic everywhere except t  −1. Therefore, the given equation has
two singular points, t  −1 and t  2.

7.) sinxy ′′  cosxy  0

Putting the equation in standard form we get:

y ′′  cosx
sinx

y  0 Hence:

px  0 qx  cosx
sinx

 cotx

Since the cotangent function is  at integer multiples of , we see that qx is not defined
and , therefore not analytical at n. Hence the differential equation is singular only at the
points n, where n is an integer.

In problems 11, 12, 15 and 17 find at least the first four non zero terms in a power series
expansion about x  0 for a general solution to the given differential equation.

11.) y ′  x  2y  0

The coefficient, x  2, is a polynomial, and so it is analytical everywhere. Therefore,
x  0 is an ordinary point on the given equation.

We seek the power series solutiin in the form:

yx ∑
n0



anxn  y ′x ∑
n1



nanxn−1

We now substitute the power series for y and y ′ into the given differential equation and
obtain:

y ′  x  2y  0

∑
n1


nanxn−1  x  2∑

n0


anxn  0

We want to be able to write the left-hand side of this equation as a single power seriess. This will
allow us to find expressions for the coefficient of each power of x. Therefore, we first need to shift the
indices in each power series above so that they sum over the same powers of x. Thus, we let k  n − 1
in the first summation and note that this means that n  k  1 and that k  0 when n  1. This yield

∑
k0


k  1ak1xk ∑

k0


2akxk ∑

k1


ak−1xk  0

 a1 ∑
k1


k  1ak1xk  2a0 ∑

k1


2akxk ∑

k1


ak−1xk  0
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 a1  2a0 ∑
k1


k  1ak1  2ak  ak−1 xk  0

For the power series on the left hand side to be identically equato to zero, we must have
all zero coefficients. Hence,

a1  2a0  0
k  1ak1  2ak  ak−1  0 for all k ≥ 1
This yields:
a1  2a0  0  a1  −2a0

k  1 : 2a2  2a1  a0  0  a2 
−2a1 − a0

2
 4a0 − a0

2
 3a0

2
k  2 : 3a3  2a2  a0  0  a3 

−2a2 − a1
3

 −3a0  2a0
3

 −a0

3
Therefore,

yx  a0 − 2a0x 
3a0

2
x2 − a0

3
x3 . . . . . . a0 1 − 2x  3x2

2
− x3

3
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̄
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.) y ′ − y  0

The coefficient of y is the integer −1, which is analytic everywhere. Thus we expect to find a power
series solution of the form

yx  a0  a1x  a2x2      ∑n0
 anxn

Our task is to determine the coefficients an.
For this purpose we need the expansion for y′x that is given by termwise differentiation of the

above equation:
y′x  0  a1  2a2x  3a3x2      ∑n1

 nanxn−1.
We now substitute the series expansion for y and y′ and obtain:
∑n1
 nanxn−1 − ∑n0

 anxn  0.
We want to be able to write the left-hand side of this equation as a single power series. This will

allow us to find expressions for the coefficient of each power of x. Therefore, we first need to shift the
indices in each power series above so that they sum over the same powers of x. Thus, we let k  n − 1
in the first summation and note that this means that n  k  1 and that k  0 when n  1. This yields

∑n1
 nanxn−1  ∑k0

 k  1ak1xk

In the second power series we need only to replace n with k. Substituting all of these expressions
into their appropriate places yields

∑k0
 k  1ak1xk − ∑k0

 akxk  0.
In order for this power series to equal to zero, each coefficient must be zero. Therefore, we obtain

k  1ak1 − ak  0 → ak1 
ak

k1

Setting k  1,2,3. . . and using the fact that a1  a0

a2  a1

11
 a0

2
a4  a3

31
 a3

4
 1

4
 1

3
 a0

2


a3  a2

21
 1

3
 a0

2
 a5  a4

41
 a4

5  1
5 

1
4
 1

3
 a0

2
 etc.

Hence the power series for the solution takes the form

yx  a01  x  1
2

x2  1
3!

x3 . . .   a0∑n0
 xn

n!
 a0ex
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̄
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̄
.)

y ′′  x − 1y ′  y  0
Here P  x − 1 and Q  1 so there are no singularities and x  0 is an ordinary point. Then

3



y ∑
n0



anxn

y′ ∑
n1



annxn−1

y′′ ∑
n2



annn − 1xn−2

and the DE implies

∑
n2



annn − 1xn−2 ∑
n1



annxn −∑
n1



annxn−1 ∑
n0



anxn  0

We shift the first and third sums above by letting k  n − 2 or n  k  2 and j  n − 1 or n  j  1 and
get

∑
k0



ak2k  2k  1xk −∑
j0



aj1j  1xj ∑
n1



ann  1xn  a0  0

Replacing all of the place keepers by m and writing out the first terms of the first and second sums
leads to

21a2 − a1  a0 ∑
m1



am2m  2m  1 − am1m  1  amm  1xm  0

Thus

2a2 − a1  a0  0

am2m  2m  1 − am1m  1  amm  1  0

or

am2 
am1 − am

m  2
m  1,2,3,…

Hence

a2 
a1 − a0

2

m  1  a3 
a2 − a1

3


a1−a0

2
− a1

3
 −a1  a0 

6

m  2  a4 
a3 − a2

4


−a1a0 
6

− a1−a0

2

4
 −2a1  a0

12
Therefore

yx ∑
n0



anxn  a0  a1x  a2x2 

 a0 1 − x2

2
− x3

6
 x4

12
  a1 x  x2

2
− x3

6
− x4

6


4


