MA 221 Homework Solutions Due date: April 8, 2014

Page 655 - 656 Section 11.2 Problems <u>15</u>, <u>17</u> and <u>19</u> (Underlined problems are to be handed in)

In Problems 15, 17 and 19 find all the real eigenvalues and eigenfunctions for the given eigenvalue problem.

13.) $y'' + \lambda y = 0;$

 $y(0) = 0, \qquad y'(1) = 0$

The auxiliary equation for this problem is: $r^2 + \lambda = 0$.

To find eigenvalues that yield nontrivial solutions we will consider the three cases

 $\lambda < 0$ $\lambda = 0$ $\lambda > 0$

 $\lambda > 0$

Case 1: $\lambda < 0$ Let $\lambda = -\alpha^2$, where $\alpha \neq 0$. The DE becomes

$$y'' - \alpha^2 y = 0$$

In this case, the roots to the auxiliary equation are $\pm \alpha$ Therefore, a general solution to the differential equation is given by:

$$y(x) = c_1 e^{\alpha x} + c_2 e^{-\alpha x}$$

By applying the BC's: $y(0) = c_1 + c_2 = 0 \implies c_2 = -c_1$ Thus

$$y(x) = c_1(e^{\alpha x} - e^{-\alpha x})$$

In order to apply the second BC, we need to find y'(x). Thus we have:

$$y'(x) = c_1 \alpha (e^{\alpha x} + e^{-\alpha x})$$

Plugging in the second BC y'(1) = 0

$$y'(1) = c_1 \alpha (e^\alpha + e^{-\alpha}) = 0$$

Since $e^{\alpha} + e^{\alpha} \neq 0$, the only way the equation above can be true is for $c_1 = 0$. So in this case we have only the trivial solution. Thus, there are no eigenvalues for $\lambda < 0$.

Case2: $\lambda = 0$

In this case we are solving the differential equation y'' = 0. This equation has a general solution given by:

 $y(x) = c_1 + c_2 x \implies y'(x) = c_2$ By applying the boundary conditions, we obtain $y(0) = c_1 = 0;$ $y'(1) = c_2 = 0$ Thus, $c_1 = c_2 = 0$, and zero is not an eigenvalue

Case 3: $\lambda > 0$ Let $\lambda = \beta^2$ where $\beta \neq 0$. The DE becomes $v'' + \beta^2 v = 0$

In this case the roots to the associated auxiliary equation are $r = \pm \beta i$ Therefore, the general solution is given by

$$f(x) = c_1 \cos \beta x + c_2 \sin \beta x$$

By applying the first boundary condition, we obtain $y(0) = c_1 = 0$

$$y(x) = c_2 \sin \beta x$$

In order to apply the second BC we need to find y'(x). Thus,

$$y'(x) = c_2 \beta \cos \beta x$$

Pluging in the BC

$$y'(1) = c_2 \beta \cos \beta = 0$$

Therefore, in order to obtain a solution other that the trivial solution, we must have $\cos \beta = 0 \implies \beta = \left(n + \frac{1}{2}\right)\pi, \quad n = 0, 1, 2...$ $\Rightarrow \lambda_n = \beta^2 = \left(n + \frac{1}{2}\right)^2 \pi^2, \quad \text{with } n = 0, 1, 2...$

For these eigenvalues λ_n , we have the corresponding eigenfunctions,

$$y_n(x) = c_n \sin\left[\left(n + \frac{1}{2}\right)\pi x\right]$$
 with $n = 0, 1, 2, \dots$

where c_n is an arbitrary nonzero constant.

$$\underline{15}.) \ y'' + 3y + \lambda y = 0; y'(0) = 0, \qquad y'(\pi) = 0$$

The auxiliary equation for this problem is: $r^2 + (\lambda + 3) = 0$ and $r = \pm \sqrt{-(3 + \lambda)}$

To find the eigenvalues which yield nontrivial solutions, three cases must be considered:

 $\lambda + 3 < 0$

 $\lambda + 3 = 0$

 $\lambda + 3 > 0$ Case1: $\lambda + 3 < 0$ Let $\lambda + 3 = -\alpha^2$ where $\alpha \neq 0$

In this case the roots to the auxiliary equation are the real numbers $\pm \sqrt{-(\lambda + 3)}$

The general solution to $y'' - \alpha^2 y = 0$ is $y(x) = c_1 e^{\alpha x} + c_2 e^{-\alpha x}$

By applying the first boundary condition, we obtain:

 $y'(x) = c_1 \alpha e^{\alpha x} - c_2 \alpha e^{-\alpha x} = \alpha (c_1 e^{\sqrt{-(\lambda+3)}x} - c_2 e^{-\sqrt{-(\lambda+3)}x})$ $y'(0) = \alpha(c_1 - c_2) = 0 \Longrightarrow c_1 - c_2 = 0 \Longrightarrow c_1 = c_2$ $y'(\pi) = \alpha(c_1e^{\alpha\pi} - c_1e^{-\alpha\pi}) = \alpha c_1(e^{\alpha\pi} - e^{-\alpha\pi}) = 0$; since $\alpha \neq 0$ and $e^{\alpha\pi} - e^{-\alpha\pi} \neq 0 \implies c_1 = c_2 = 0$ In this case, we have only the trivial solution. There are no eigenvalues for $\lambda + 3 < 0$. Case 2: $\lambda + 3 = 0$

In this case we are solving the differential equation y'' = 0. This equation has a general solution given by:

 $y(x) = c_1 + c_2 x$ $y'(x) = c_2$ By applying the boundary conditions, we obtain $y'(0) = c_2 = 0;$ $y'(\pi) = c_2 = 0$ Thus, c_1 is arbitary and zero is an eigenvalue with eigenfunction y(x) = C, *C* any constant. Case $3:\lambda + 3 > 0$ Let $\lambda + 3 = \beta^2$ where $\beta \neq 0$ The DE becomes

$$y'' + \beta^2 y = 0$$

Therefore, the general solution is given by

$$y(x) = c_1 \cos \beta x + c_2 \sin \beta x$$

By applying the first boundary condition, we obtain $y'(x) = \beta(-c_1 \sin \beta x + c_2 \cos \beta x)$ $y'(0) = \beta c_2 = 0 \Rightarrow c_2 = 0 \Rightarrow y'(x) = \beta(-c_1 \sin \beta x)$ $y'(\pi) = \beta(-c_1 \sin(\beta \pi) = 0)$, Since $\beta \neq 0$ and we want $c_1 \neq 0 \Rightarrow \beta = n \Rightarrow \lambda + 3 = \beta^2 = n^2 \Rightarrow \lambda = n^2 - 3$ $\Rightarrow \lambda_n = n^2 - 3$ with n = 0, 1, 2...

For these eigenvalues λ_n , we have the corresponding eigenfunctions, $y_n(x) = c_n \cos nx$ with $n = 0, 1, 2, \dots$ where c_n is an arbitrary nonzero constant.

17.) $y'' + \lambda y = 0$ 2y(0) + y'(0) = 0 $y(\pi) = 0$ The find the eigenvalues which yield nontrivial solutions, three cases must be considered: $\lambda < 0$ $\lambda = 0$ $\lambda > 0$

Case 1: $\lambda < 0$ $\lambda = -\mu^2$ $\mu > 0$ and the DE is $y'' - \mu^2 y = 0$

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}$$

For convenience we introduce the hyperbolic sine and cosine

$$\cosh(\mu x) = \frac{e^{\mu x} + e^{-\mu x}}{2}$$
$$\sinh(\mu x) = \frac{e^{\mu x} - e^{-\mu x}}{2}$$

and write the solution above in terms of these functions. Then

$$y(x) = c_1(\cosh(\mu x) + \sinh(\mu x)) + c_2(\cosh(\mu x) - \sinh(\mu x))$$

= (c_1 + c_2) \cosh(\mu x) + (c_1 - c_2) \sinh(\mu x)

Let

$$k_1 = (c_1 + c_2)$$
 $k_2 = (c_1 - c_2)$

then:

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x} = k_1 \cosh(\mu x) + k_2 \sinh(\mu x)$$

$$y'(x) = \mu k_1 \sinh(\mu x) + \mu k_2 \cosh(\mu x)$$
$$2y(0) + y'(0) = 2k_1 + \mu k_2 = 0 \implies k_2 = \frac{-2k_1}{\mu}$$

so

$$y(x) = k_1 \left(\cosh(\mu x) - \left(\frac{2}{\mu}\right) \sinh(\mu x) \right)$$
$$y(\pi) = k_1 \left(\cosh(\mu \pi) - \left(\frac{2}{\mu}\right) \sinh(\mu \pi) \right) = 0$$

Since we want $k_1 \neq 0$. then we must have

$$\frac{\mu}{2} = \tanh(\mu\pi)$$

so

$$\mu = 2 \tanh(\mu \pi) \implies \lambda = -\mu^2 = -4 \tanh^2(\mu \pi)$$

and

$$y(x) = k_1 \left(\cosh(\mu x) - \left(\frac{2}{\mu}\right) \sinh(\mu x) \right)$$

Case 2: $\lambda = 0$ The DE becomes y''(x) = 0, so y(x) = ax + b y'(x) = a2y(0) + y'(0) = 2b + a = 0 $y(\pi) = a\pi + b = 0$ Thus a = b = 0 and we have only the trivial solution.

Case 3:
$$\lambda > 0$$
 Let $\lambda = \mu^2$, where $\mu \neq 0$. Then the DE becomes $y'' + \mu^2 y = 0$ and
 $y(x) = c_1 \sin \mu x + c_2 \cos \mu x$
 $y'(x) = c_1 \mu \cos \mu x - c_2 \mu \sin x$
 $2y(0) + y'(0) = 2c_2 + \mu c_1 = 0$
 $y(\pi) = c_1 \sin \mu \pi + c_2 \cos \mu \pi = 0$

Then:

$$c_2 = \frac{-\mu}{2}c_1$$

and

$$c_1\left(\sin\mu\pi - \frac{\mu}{2}\cos\mu\pi\right) = 0$$

so

$$tanh \mu \pi = \frac{\mu}{2} \implies \mu = 2 \tan \mu \pi$$

and

$$y = c \left(\sin \mu x - \frac{\mu}{2} \cos \mu x \right)$$

19.)
$$(xy')' + \lambda x^{-1} = 0$$
 $y'(0) = 0$ $y(e^{\pi}) = 0$
By the Cauchy-Euler equation
 $(xy')' + \lambda x^{-1} = x^2 y'' + xy' + \lambda y = 0$ $x > 0$

Substituting $y = x^r$ gives $r^2 + \lambda = 0$ as the auxiliary equation for $x^2 y'' + xy' + \lambda y = 0$ Case 1: $\lambda < 0$: Let $\lambda = -\mu^2$ for $\mu > 0$. The roots are $r = \pm \mu$ The general solution is: $y(x) = c_1 x^{\mu} + c_2 x^{-\mu}$ and $y'(x) = c_1 \mu x^{\mu} - c_2 \mu x^{-\mu-1} = \mu (c_1 x^{\mu} - c_2 x^{-\mu-1})$ Substituting into the first boundary condition gives $y'(1) = \mu(c_1 - c_2) = 0$ Since $\mu > 0$ $c_1 - c_2 = 0$ \Rightarrow $c_1 = c_2$ $\Rightarrow y(x) = c_1(x^{\mu} + x^{-\mu})$ Substituting this into the second condition yields: $y(e^{\pi}) = c_1(e^{\mu\pi} + e^{-\mu\pi}) = 0$ Since $e^{\mu\pi} + e^{-\mu\pi} \neq 0$ the only way equation $c_1(e^{\mu\pi} + e^{-\mu\pi}) = 0$ can be true is for $c_1 = 0$. In this case, we only have trivial solutions. Case 2: $\lambda = 0$ In this case we are solving the differential equation (xy')' = 0. This equation can be solved as follows: $xy' = c_1 \qquad \Rightarrow y' = \frac{c_1}{x} \qquad \Rightarrow y(x) = c_2 + c_1 \ln x$ By applying the boundary conditions, we obtain $y'(1) = c_1 = 0$ $y(e^{\pi}) = c_2 + c_1 \ln(e^{\pi}) = c_2 + c_1 \pi = 0$ Solving these equations simultaneously yields $c_1 = c_2 = 0$. This, we again find only the trivial solution. Therefore, $\lambda = 0$ is not an eigenvalue. Case 3: $\lambda > 0$ Let $\lambda = \mu^2$ for $\mu > 0$. The roots of the auxiliary equation are $r \pm \mu i$ The general solution is: $y(x) = c_1 \cos(\mu \ln x) + c_2 \sin(\mu \ln x)$ $y'(x) = -c_1\left(\frac{\mu}{x}\right)\sin(\mu \ln x) + c_2\left(\frac{\mu}{x}\right)\cos(\mu \ln x)$ By applying the first boundary condition, we obtain $y'(1) = c_2 \mu = 0$ $c_2 = 0$ Applying the second boundary condition, we obtain $y(e^{\pi}) = c_1 \cos(\mu \ln(e^{\pi})) = c_1 \cos(\mu \pi) = 0$ Therefore, in order to obtain a solution other than the trivial solution, we must have $\cos(\mu\pi) = 0 \qquad \Rightarrow \qquad \mu\pi = (n + \frac{1}{2})\pi \qquad n = 0, 1, 2, \dots, n = 0,$ Corresponding to the eigenvalues, λ_n 's, we have the eigenfunctions: $y_n(x) = c_n \cos\left[(n + \frac{1}{2})\ln x\right]$ n = 0, 1, 2....Where c_n is an arbitrary nonzero constant.