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̄
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̄
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̄

and 1
̄
9
̄

(Underlined problems are to be handed in)

In Problems 15, 17 and 19 find all the real eigenvalues and eigenfunctions for the given eigenvalue
problem.
13.) y′′  y  0;

y0  0, y′1  0
The auxiliary equation for this problem is: r2    0.

To find eigenvalues that yield nontrivial solutions we will consider the three cases
  0
  0
  0

Case 1:   0 Let   −2, where  ≠ 0. The DE becomes

y′′ − 2y  0

In this case, the roots to the auxiliary equation are  Therefore, a general solution to the differential
equation is given by:

yx  c1ex  c2e−x

By applying the BC’s:
y0  c1  c2  0  c2  −c1
Thus

yx  c1ex − e−x

In order to apply the second BC, we need to find y′x. Thus we have:

y′x  c1ex  e−x

Plugging in the second BC y′1  0

y′1  c1e  e−  0

Since e  e ≠ 0, the only way the equation above can be true is for c1  0. So in this case we have
only the trivial solution. Thus, there are no eigenvalues for   0.

Case2:   0
In this case we are solving the differential equation y′′  0. This equation has a general solution given
by:
yx  c1  c2x  y′x  c2
By applying the boundary conditions, we obtain
y0  c1  0;
y′1  c2  0
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Thus, c1  c2  0, and zero is not an eigenvalue

Case 3:   0 Let   2 where  ≠ 0. The DE becomes

y′′  2y  0

In this case the roots to the associated auxiliary equation are r  i
Therefore, the general solution is given by

yx  c1 cosx  c2 sinx

By applying the first boundary condition, we obtain
y0  c1  0 

yx  c2 sinx

In order to apply the second BC we need to find y′x. Thus,

y′x  c2cosx

Pluging in the BC

y′1  c2cos  0

Therefore, in order to obtain a solution other that the trivial solution, we must have

cos  0    n  1
2

, n  0,1,2. . .

 n  2  n  1
2

2
2, with n  0,1,2. . .

For these eigenvalues n, we have the corresponding eigenfunctions,

ynx  cn sin n  1
2

x with n  0,1,2. . . . .

where cn is an arbitrary nonzero constant.

1
̄
5
̄
.) y′′  3y  y  0;

y′0  0, y′  0

The auxiliary equation for this problem is: r2    3  0 and r   −3  

To find the eigenvalues which yield nontrivial solutions, three cases must be considered:
  3  0
  3  0
  3  0
Case1:   3  0 Let   3  −2 where  ≠ 0

In this case the roots to the auxiliary equation are the real numbers  −  3

The general solution to y′′ − 2y  0 is yx  c1ex  c2e−x

By applying the first boundary condition, we obtain:

y′x  c1ex − c2e−x  c1e −3 x − c2e− −3 x
y′0  c1 − c2  0  c1 − c2  0  c1  c2
y′  c1e − c1e−  c1e − e−  0; since  ≠ 0 and e − e− ≠ 0  c1  c2  0
In this case, we have only the trivial solution. There are no eigenvalues for   3  0.
Case 2:   3  0
In this case we are solving the differential equation y′′  0. This equation has a general solution given
by:

2



yx  c1  c2x
y′x  c2
By applying the boundary conditions, we obtain
y′0  c2  0;
y′  c2  0
Thus, c1 is arbitary and zero is an eigenvalue with eigenfunction yx  C, C any constant.

Case 3:  3  0 Let   3  2 where  ≠ 0
The DE becomes

y′′  2y  0

Therefore, the general solution is given by

yx  c1 cosx  c2 sinx

By applying the first boundary condition, we obtain
y′x  −c1 sinx  c2 cosx
y′0  c2  0  c2  0  y′x  −c1 sinx
y′  −c1 sin  0, Since  ≠ 0 and we want
c1 ≠ 0    n    3  2  n2    n2 − 3
 n  n2 − 3 with n  0,1,2. . .
For these eigenvalues n, we have the corresponding eigenfunctions,
ynx  cn cosnx with n  0,1,2. . . . . where cn is an arbitrary nonzero constant.

1
̄
7
̄
.) y′′  y  0 2y0  y′0  0 y  0

The find the eigenvalues which yield nontrivial solutions, three cases must be considered:
  0
  0
  0

Case 1:   0
  −2   0 and the DE is y′′ − 2y  0

yx  c1ex  c2e−x

For convenience we introduce the hyperbolic sine and cosine

coshx  ex  e−x

2

sinhx  ex − e−x

2

and write the solution above in terms of these functions. Then

yx  c1coshx  sinhx  c2coshx − sinhx

 c1  c2coshx  c1 − c2 sinhx

Let

k1  c1  c2 k2  c1 − c2

then:

yx  c1ex  c2e−x  k1 coshx  k2 sinhx
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y′x  k1 sinhx  k2 coshx

2y0  y′0  2k1  k2  0  k2  −2k1


so

yx  k1 coshx − 2
 sinhx

y  k1 cosh − 2
 sinh  0

Since we want k1 ≠ 0. then we must have

2
 tanh

so

  2 tanh    −2  −4 tanh2
and

yx  k1 coshx − 2
 sinhx

Case 2:   0
The DE becomes y′′x  0, so yx  ax  b y′x  a
2y0  y′0  2b  a  0 y  a  b  0
Thus a  b  0 and we have only the trivial solution.

Case 3:   0 Let   2, where  ≠ 0. Then the DE becomes y′′  2y  0 and

yx  c1 sinx  c2 cosx

y′x  c1cosx − c2 sinx

2y0  y′0  2c2  c1  0

y  c1 sin  c2 cos  0

Then:

c2 
−
2

c1

and

c1 sin − 
2

cos  0

so

tanh 

2
   2 tan

and

y  c sinx − 
2

cosx

1
̄
9
̄
.) xy′′  x−1  0 y′0  0 ye  0

By the Cauchy-Euler equation
xy′′  x−1  x2 y′′  xy′  y  0 x  0
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Substituting y  xr gives r2    0 as the auxiliary equation for x2 y′′  xy′  y  0

Case 1:   0 : Let   −2 for   0. The roots are r  
The general solution is: yx  c1x  c2x−

and y′x  c1x − c2x−−1  c1x − c2x−−1
Substituting into the first boundary condition gives
y′1  c1 − c2  0
Since   0
c1 − c2  0  c1  c2  yx  c1x  x−
Substituting this into the second condition yields:
ye  c1e  e−  0
Since e  e− ≠ 0 the only way equation c1e  e−  0 can be true is for c1  0.
In this case, we only have trivial solutions.
Case 2:   0

In this case we are solving the differential equation xy′′  0. This equation can be solved as follows:
xy′  c1  y′  c1

x  yx  c2  c1 lnx
By applying the boundary conditions, we obtain
y′1  c1  0 ye  c2  c1 lne  c2  c1  0
Solving these equations simultaneously yields c1  c2  0. This, we again find only the trivial
solution. Therefore,   0 is not an eigenvalue.
Case 3:   0

Let   2 for   0. The roots of the auxiliary equation are r  i
The general solution is:
yx  c1 cos lnx  c2 sin lnx
y′x  −c1


x  sin lnx  c2


x cos lnx

By applying the first boundary condition, we obtain
y′1  c2  0 c2  0
Applying the second boundary condition, we obtain
ye  c1 cos lne  c1 cos  0
Therefore, in order to obtain a solution other than the trivial solution, we must have
cos  0    n  1

2
 n  0,1,2. . . . . . . .

   n  1
2

 n  n  1
2
2 n  0,1,2. . . . . . . .

Corresponding to the eigenvalues, n’s, we have the eigenfunctions:

ynx  cncos n  1
2
 lnx n  0,1,2. . . . . .

Where cn is an arbitrary nonzero constant.
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