MA 221 Homework Solutions

Due date: April 8, 2014

Page 655-656 Section 11.2
Problems $1 \underline{15}, \underline{1} \underline{1}$ and $1 \underline{1}$
(Underlined problems are to be handed in)

In Problems 15, 17 and 19 find all the real eigenvalues and eigenfunctions for the given eigenvalue problem.
13.) $y^{\prime \prime}+\lambda y=0$;
$y(0)=0, \quad y^{\prime}(1)=0$
The auxiliary equation for this problem is: $r^{2}+\lambda=0$.
To find eigenvalues that yield nontrivial solutions we will consider the three cases
$\lambda<0$
$\lambda=0$
$\lambda>0$

Case 1: $\lambda<0$ Let $\lambda=-\alpha^{2}$, where $\alpha \neq 0$. The DE becomes

$$
y^{\prime \prime}-\alpha^{2} y=0
$$

In this case, the roots to the auxiliary equation are $\pm \alpha$ Therefore, a general solution to the differential equation is given by:

$$
y(x)=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}
$$

By applying the BC 's:
$y(0)=c_{1}+c_{2}=0 \quad \Rightarrow \quad c_{2}=-c_{1}$
Thus

$$
y(x)=c_{1}\left(e^{\alpha x}-e^{-\alpha x}\right)
$$

In order to apply the second BC, we need to find $y^{\prime}(x)$. Thus we have:

$$
y^{\prime}(x)=c_{1} \alpha\left(e^{\alpha x}+e^{-\alpha x}\right)
$$

Plugging in the second $\mathrm{BC} y^{\prime}(1)=0$

$$
y^{\prime}(1)=c_{1} \alpha\left(e^{\alpha}+e^{-\alpha}\right)=0
$$

Since $e^{\alpha}+e^{\alpha} \neq 0$, the only way the equation above can be true is for $c_{1}=0$. So in this case we have only the trivial solution. Thus, there are no eigenvalues for $\lambda<0$.

Case2: $\lambda=0$
In this case we are solving the differential equation $y^{\prime \prime}=0$. This equation has a general solution given by:
$y(x)=c_{1}+c_{2} x \quad \Rightarrow \quad y^{\prime}(x)=c_{2}$
By applying the boundary conditions, we obtain
$y(0)=c_{1}=0$;
$y^{\prime}(1)=c_{2}=0$

Thus, $c_{1}=c_{2}=0$, and zero is not an eigenvalue
Case 3: $\lambda>0$ Let $\lambda=\beta^{2}$ where $\beta \neq 0$. The DE becomes

$$
y^{\prime \prime}+\beta^{2} y=0
$$

In this case the roots to the associated auxiliary equation are $r= \pm \beta i$
Therefore, the general solution is given by

$$
y(x)=c_{1} \cos \beta x+c_{2} \sin \beta x
$$

By applying the first boundary condition, we obtain
$y(0)=c_{1}=0 \quad \Rightarrow$

$$
y(x)=c_{2} \sin \beta x
$$

In order to apply the second $B C$ we need to find $y^{\prime}(x)$. Thus,

$$
y^{\prime}(x)=c_{2} \beta \cos \beta x
$$

Pluging in the BC

$$
y^{\prime}(1)=c_{2} \beta \cos \beta=0
$$

Therefore, in order to obtain a solution other that the trivial solution, we must have
$\cos \beta=0 \quad \Rightarrow \quad \beta=\left(n+\frac{1}{2}\right) \pi, \quad n=0,1,2 \ldots$
$\Rightarrow \lambda_{n}=\beta^{2}=\left(n+\frac{1}{2}\right)^{2} \pi^{2}, \quad$ with $n=0,1,2 \ldots$
For these eigenvalues λ_{n}, we have the corresponding eigenfunctions,

$$
y_{n}(x)=c_{n} \sin \left[\left(n+\frac{1}{2}\right) \pi x\right] \quad \text { with } n=0,1,2 \ldots .
$$

where c_{n} is an arbitrary nonzero constant.
15.) $y^{\prime \prime}+3 y+\lambda y=0$;
$y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0$
The auxiliary equation for this problem is: $r^{2}+(\lambda+3)=0$ and $r= \pm \sqrt{-(3+\lambda)}$
To find the eigenvalues which yield nontrivial solutions, three cases must be considered:
$\lambda+3<0$
$\lambda+3=0$
$\lambda+3>0$
Case1: $\lambda+3<0$ Let $\lambda+3=-\alpha^{2}$ where $\alpha \neq 0$
In this case the roots to the auxiliary equation are the real numbers $\pm \sqrt{-(\lambda+3)}$
The general solution to $y^{\prime \prime}-\alpha^{2} y=0$ is $y(x)=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}$
By applying the first boundary condition, we obtain:
$y^{\prime}(x)=c_{1} \alpha e^{\alpha x}-c_{2} \alpha e^{-\alpha x}=\alpha\left(c_{1} e^{\sqrt{-(\lambda+3)} x}-c_{2} e^{-\sqrt{-(\lambda+3)} x}\right)$
$y^{\prime}(0)=\alpha\left(c_{1}-c_{2}\right)=0 \Rightarrow c_{1}-c_{2}=0 \Rightarrow c_{1}=c_{2}$
$y^{\prime}(\pi)=\alpha\left(c_{1} e^{\alpha \pi}-c_{1} e^{-\alpha \pi}\right)=\alpha c_{1}\left(e^{\alpha \pi}-e^{-\alpha \pi}\right)=0$; since $\alpha \neq 0$ and $e^{\alpha \pi}-e^{-\alpha \pi} \neq 0 \Rightarrow c_{1}=c_{2}=0$
In this case, we have only the trivial solution. There are no eigenvalues for $\lambda+3<0$.
Case 2: $\lambda+3=0$
In this case we are solving the differential equation $y^{\prime \prime}=0$. This equation has a general solution given by:
$y(x)=c_{1}+c_{2} x$
$y^{\prime}(x)=c_{2}$
By applying the boundary conditions, we obtain
$y^{\prime}(0)=c_{2}=0$;
$y^{\prime}(\pi)=c_{2}=0$
Thus, c_{1} is arbitary and zero is an eigenvalue with eigenfunction $y(x)=C, C$ any constant.
Case $3: \lambda+3>0$ Let $\lambda+3=\beta^{2}$ where $\beta \neq 0$
The DE becomes

$$
y^{\prime \prime}+\beta^{2} y=0
$$

Therefore, the general solution is given by

$$
y(x)=c_{1} \cos \beta x+c_{2} \sin \beta x
$$

By applying the first boundary condition, we obtain
$y^{\prime}(x)=\beta\left(-c_{1} \sin \beta x+c_{2} \cos \beta x\right)$
$y^{\prime}(0)=\beta c_{2}=0 \Rightarrow c_{2}=0 \Rightarrow y^{\prime}(x)=\beta\left(-c_{1} \sin \beta x\right)$
$y^{\prime}(\pi)=\beta\left(-c_{1} \sin (\beta \pi)=0, \quad\right.$ Since $\beta \neq 0$ and we want
$c_{1} \neq 0 \Rightarrow \beta=n \Rightarrow \lambda+3=\beta^{2}=n^{2} \Rightarrow \lambda=n^{2}-3$
$\Rightarrow \lambda_{n}=n^{2}-3 \quad$ with $n=0,1,2 \ldots$
For these eigenvalues λ_{n}, we have the corresponding eigenfunctions, $y_{n}(x)=c_{n} \cos n x \quad$ with $n=0,1,2 \ldots$. where c_{n} is an arbitrary nonzero constant.
17.) $y^{\prime \prime}+\lambda y=0 \quad 2 y(0)+y^{\prime}(0)=0 \quad y(\pi)=0$

The find the eigenvalues which yield nontrivial solutions, three cases must be considered:
$\lambda<0$
$\lambda=0$
$\lambda>0$

Case 1: $\lambda<0$
$\lambda=-\mu^{2} \quad \mu>0$ and the DE is $y^{\prime \prime}-\mu^{2} y=0$

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x}
$$

For convenience we introduce the hyperbolic sine and cosine

$$
\begin{aligned}
& \cosh (\mu x)=\frac{e^{\mu x}+e^{-\mu x}}{2} \\
& \sinh (\mu x)=\frac{e^{\mu x}-e^{-\mu x}}{2}
\end{aligned}
$$

and write the solution above in terms of these functions. Then

$$
\begin{aligned}
y(x) & =c_{1}(\cosh (\mu x)+\sinh (\mu x))+c_{2}(\cosh (\mu x)-\sinh (\mu x)) \\
& =\left(c_{1}+c_{2}\right) \cosh (\mu x)+\left(c_{1}-c_{2}\right) \sinh (\mu x)
\end{aligned}
$$

Let

$$
k_{1}=\left(c_{1}+c_{2}\right) \quad k_{2}=\left(c_{1}-c_{2}\right)
$$

then:

$$
y(x)=c_{1} e^{\mu x}+c_{2} e^{-\mu x}=k_{1} \cosh (\mu x)+k_{2} \sinh (\mu x)
$$

$$
\begin{gathered}
y^{\prime}(x)=\mu k_{1} \sinh (\mu x)+\mu k_{2} \cosh (\mu x) \\
2 y(0)+y^{\prime}(0)=2 k_{1}+\mu k_{2}=0 \quad \Rightarrow k_{2}=\frac{-2 k_{1}}{\mu}
\end{gathered}
$$

so

$$
\begin{gathered}
y(x)=k_{1}\left(\cosh (\mu x)-\left(\frac{2}{\mu}\right) \sinh (\mu x)\right) \\
y(\pi)=k_{1}\left(\cosh (\mu \pi)-\left(\frac{2}{\mu}\right) \sinh (\mu \pi)\right)=0
\end{gathered}
$$

Since we want $k_{1} \neq 0$. then we must have

$$
\frac{\mu}{2}=\tanh (\mu \pi)
$$

so

$$
\mu=2 \tanh (\mu \pi) \quad \Rightarrow \quad \lambda=-\mu^{2}=-4 \tanh ^{2}(\mu \pi)
$$

and

$$
y(x)=k_{1}\left(\cosh (\mu x)-\left(\frac{2}{\mu}\right) \sinh (\mu x)\right)
$$

Case 2: $\lambda=0$
The DE becomes $y^{\prime \prime}(x)=0$, so $y(x)=a x+b \quad y^{\prime}(x)=a$
$2 y(0)+y^{\prime}(0)=2 b+a=0 \quad y(\pi)=a \pi+b=0$
Thus $a=b=0$ and we have only the trivial solution.
Case 3: $\lambda>0$ Let $\lambda=\mu^{2}$, where $\mu \neq 0$. Then the DE becomes $y^{\prime \prime}+\mu^{2} y=0$ and

$$
\begin{gathered}
y(x)=c_{1} \sin \mu x+c_{2} \cos \mu x \\
y^{\prime}(x)=c_{1} \mu \cos \mu x-c_{2} \mu \sin x \\
2 y(0)+y^{\prime}(0)=2 c_{2}+\mu c_{1}=0 \\
y(\pi)=c_{1} \sin \mu \pi+c_{2} \cos \mu \pi=0
\end{gathered}
$$

Then:

$$
c_{2}=\frac{-\mu}{2} c_{1}
$$

and

$$
c_{1}\left(\sin \mu \pi-\frac{\mu}{2} \cos \mu \pi\right)=0
$$

so

$$
\tanh \mu \pi=\frac{\mu}{2} \Rightarrow \mu=2 \tan \mu \pi
$$

and

$$
y=c\left(\sin \mu x-\frac{\mu}{2} \cos \mu x\right)
$$

19.) $\left(x y^{\prime}\right)^{\prime}+\lambda x^{-1}=0 \quad y^{\prime}(0)=0 \quad y\left(e^{\pi}\right)=0$

By the Cauchy-Euler equation
$\left(x y^{\prime}\right)^{\prime}+\lambda x^{-1}=x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0 \quad x>0$

Substituting $y=x^{r}$ gives $r^{2}+\lambda=0$ as the auxiliary equation for $x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0$
Case 1: $\lambda<0$: Let $\lambda=-\mu^{2}$ for $\mu>0$. The roots are $r= \pm \mu$
The general solution is: $y(x)=c_{1} x^{\mu}+c_{2} x^{-\mu}$
and $y^{\prime}(x)=c_{1} \mu x^{\mu}-c_{2} \mu x^{-\mu-1}=\mu\left(c_{1} x^{\mu}-c_{2} x^{-\mu-1}\right)$
Substituting into the first boundary condition gives
$y^{\prime}(1)=\mu\left(c_{1}-c_{2}\right)=0$
Since $\mu>0$
$c_{1}-c_{2}=0 \quad \Rightarrow \quad c_{1}=c_{2} \quad \Rightarrow y(x)=c_{1}\left(x^{\mu}+x^{-\mu}\right)$
Substituting this into the second condition yields:
$y\left(e^{\pi}\right)=c_{1}\left(e^{\mu \pi}+e^{-\mu \pi}\right)=0$
Since $e^{\mu \pi}+e^{-\mu \pi} \neq 0$ the only way equation $c_{1}\left(e^{\mu \pi}+e^{-\mu \pi}\right)=0$ can be true is for $c_{1}=0$.
In this case, we only have trivial solutions.
Case 2: $\lambda=0$
In this case we are solving the differential equation $\left(x y^{\prime}\right)^{\prime}=0$. This equation can be solved as follows:
$x y^{\prime}=c_{1} \quad \Rightarrow y^{\prime}=\frac{c_{1}}{x} \quad \Rightarrow y(x)=c_{2}+c_{1} \ln x$
By applying the boundary conditions, we obtain
$y^{\prime}(1)=c_{1}=0 \quad y\left(e^{\pi}\right)=c_{2}+c_{1} \ln \left(e^{\pi}\right)=c_{2}+c_{1} \pi=0$
Solving these equations simultaneously yields $c_{1}=c_{2}=0$. This, we again find only the trivial solution. Therefore, $\lambda=0$ is not an eigenvalue.
Case 3: $\lambda>0$
Let $\lambda=\mu^{2}$ for $\mu>0$. The roots of the auxiliary equation are $r \pm \mu i$
The general solution is:
$y(x)=c_{1} \cos (\mu \ln x)+c_{2} \sin (\mu \ln x)$
$y^{\prime}(x)=-c_{1}\left(\frac{\mu}{x}\right) \sin (\mu \ln x)+c_{2}\left(\frac{\mu}{x}\right) \cos (\mu \ln x)$
By applying the first boundary condition, we obtain
$y^{\prime}(1)=c_{2} \mu=0 \quad c_{2}=0$
Applying the second boundary condition, we obtain
$y\left(e^{\pi}\right)=c_{1} \cos \left(\mu \ln \left(e^{\pi}\right)\right)=c_{1} \cos (\mu \pi)=0$
Therefore, in order to obtain a solution other than the trivial solution, we must have
$\cos (\mu \pi)=0 \quad \Rightarrow \quad \mu \pi=\left(n+\frac{1}{2}\right) \pi \quad n=0,1,2 \ldots \ldots$.
$\Rightarrow \mu=n+\frac{1}{2} \quad \Rightarrow \lambda_{n}=\left(n+\frac{1}{2}\right)^{2} \quad n=0,1,2 \ldots \ldots$. .
Corresponding to the eigenvalues, λ_{n} 's, we have the eigenfunctions:
$y_{n}(x)=c_{n} \cos \left[\left(n+\frac{1}{2}\right) \ln x\right] \quad n=0,1,2 \ldots \ldots$
Where c_{n} is an arbitrary nonzero constant.

