| Name | Instructor | | |---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------| | Ma 221 | Final Exam Solutions | 12/12/02 | | Name: | ID: | | | Lecture Section: I pledge my honor that I have abided by the S | Stevens Honor System. | | | of the two questions and answer it. T work space, continue the problem yo | you are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are doing on the other side of the page it thust show how you obtained any result that yellow are doing on the other side of the page it that yellow are successful to the page it was also as a successful that yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to answer all 7 questions. In Part II yellow are to a successive all 7 questions. In Part II yellow are to a successive all 7 questions. In Part II yellow are to a successive all 7 questions. In Part II yellow are to a successive all 7 questions. In Part II yellow are to a successive all 7 questions. In Part II yellow are to a successive all 7 ques | If you need more is on. You may not | | A table of Laplace transfe | orms and a table of integrals is | given on the | | last page of the exam. Score on Problem #1 | | | | #2 | | | | #3 | | | | #4 | | | | #5 | | | | #6 | | | #7 _____ #8 _____ #9 _____ **Total Score** #### Part I: Answer all questions #### 1. Solve (a) (8 pts) $$y' = y^2 e^{-x}$$ $y(1) = 4$ Solution: This equation is separable. Thus $$\frac{dy}{y^2} = e^{-x} dx$$ Hence $$-\frac{1}{y} = -e^{-x} + C$$ The initial condition implies $$-\frac{1}{4} = -e^{-1} + C$$ so $$C = e^{-1} - \frac{1}{4}$$ Thus $$-\frac{1}{y} = -e^{-x} + e^{-1} - \frac{1}{4}$$ or $$y = \frac{1}{e^{-x} - e^{-1} + \frac{1}{4}}$$ (b) (10 pts) $$y'' - 4y' + 53y = 0$$ $y(0) = 7$ $y'(0) = 14$ Solution: The characteristic equation is $$r^2 - 4r + 53 = 0$$ so $$r = \frac{+4 \pm \sqrt{16 - 4(53)}}{2} = 2 \pm 7i$$ Thus $$y(x) = C_1 e^{2x} \cos 7x + C_2 e^{2x} \sin 7x$$ To satisfy the initial conditions we have $$y(0) = C_1 = 7$$ so $$y(x) = 7e^{2x}\cos 7x + C_2e^{2x}\sin 7x$$ Then $$y'(x) = 14e^{2x}\cos 7x - 7e^{2x}\sin 7x + 2C_2e^{2x}\sin 7x + 7C_2e^{2x}\cos 7x$$ $$y'(0) = 14 + 7C_2 = 14 \Rightarrow C_2 = 0$$ Therefore $$y(x) = 7e^{2x}\cos 7x$$ (c) (7 pts.) $$y' = 3x^2 - \frac{y}{x}$$ Solution: We write the equation as $$y' + \frac{1}{x}y = 3x^2$$ This is a first order linear equation. The integrating factor is $e^{\int \frac{1}{x} dx} = x$. Multiplying the DE by x we have $$xy' + y = (xy)' = 3x^3$$ so $$y = \frac{3}{4}x^3 + \frac{C}{x}$$ ## 2. (a) (15 pts.) Solve $$y'' + 2y' - 3y = 3x^2 - \frac{14}{3} + 8e^x$$ Solution: First we find the homogeneous solution. The characteristic equation is $$p(r) = r^2 + 2r - 3 = (r+3)(r-1) = 0 \Rightarrow r = -3, 1$$ Therefore $$y_h = C_1 e^x + C_2 e^{-3x}$$ We have to find a particular solution for $3x^2 - \frac{14}{3}$ and $8e^x$. Since e^x is a homogeneous solution, but xe^x is not, then $$y_{p_1} = \frac{8xe^x}{p'(1)} = \frac{8xe^x}{4} = 2xe^x$$ For the polynomial we assume $$y_{p_2}(x) = Ax^2 + Bx + C$$ $$y'_{p_2}(x) = 2Ax + B$$ $$y''_{p_2}(x) = 2A$$ The DE implies $$2A + 4Ax + 2B - 3Ax^2 - 3Bx - 3C = 3x^2 - \frac{14}{3}$$ Hence $$A = -1$$ $$4A - 3B = 0 \Rightarrow B = -\frac{4}{3}$$ $$2A + 2B - 3C = -\frac{14}{3} \Rightarrow -3C = 2 + \frac{8}{3} - \frac{14}{3} = 0 \Rightarrow C = 0$$ $$y_{p_2} = -x^2 - \frac{4}{3}x$$ Thus $$y_g(x) = C_1 e^x + C_2 e^{-3x} + 2x e^x - x^2 - \frac{4}{3}x$$ SNB check: $y'' + 2y' - 3y = 3x^2 - \frac{14}{3} + 8e^x$, Exact solution is: $y(x) = -\frac{1}{6}e^x \left(6e^{-x}x^2 + 8xe^{-x} - 12x + 3\right) + C_1e^x + C_2e^{-3x}$ 2(b) (10 pts.) Find a general solution of $$y'' + y = \tan x$$ Solution: We use Variation of Parameters. $$y_h = C_1 \sin x + C_2 \cos x$$ SO $$y_p = v_1 \sin x + v_2 \cos x$$ The equations for v_1' and v_2' are $$v'_1 \sin x + v'_2 \cos x = 0$$ $$v'_1 \cos x - v'_2 \sin x = \tan x$$ $$v_1' = \frac{\begin{vmatrix} 0 & \cos x \\ \tan x & -\sin x \end{vmatrix}}{\begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix}} = \frac{-\sin x}{-1} = \sin x$$ $$v_2' = \frac{\begin{vmatrix} \sin x & 0 \\ \cos x & \tan x \end{vmatrix}}{\begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix}} = -\tan x \sin x$$ $$v_1 = -\cos x$$ $$v_2 = -\int \tan x \sin x dx = \sin x - \ln(\sec x + \tan x)$$ Therefore $$y_p = -\cos x \sin x + \cos x \sin x - \ln(\sec x + \tan x)$$ $$y_g = C_1 \sin x + C_2 \cos x - \ln(\sec x + \tan x)$$ SNB check $y'' + y = \tan x$, Exact solution is: $$y(x) = -\cos x \sin x + (\sin x - \ln(\sec x + \tan x))\cos x + C_1 \sin x + C_2 \cos x$$ 3. (a) (10 pts) Find $$\mathcal{L}^{-1}\left\{\frac{3s+2}{s^2+4s+29}\right\}$$ Solution: $$\frac{3s+2}{s^2+4s+29} = \frac{3s+2}{(s+2)^2+25} = \frac{3(s+2)-4}{(s+2)^2+25}$$ $$= 3\frac{s+2}{(s+2)^2+25} - \frac{4}{5}\frac{5}{(s+2)^2+25}$$ Therefore $$\mathcal{L}^{-1}\left\{\frac{3s+4}{s^2+4s+29}\right\} = 3\mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+25}\right\} - \frac{4}{5}\mathcal{L}^{-1}\left\{\frac{5}{(s+2)^2+25}\right\}$$ Using the shift theorem and the table at the end of the exam we have $$\mathcal{L}^{-1}\left\{\frac{3s+4}{s^2+4s+29}\right\} = 3e^{-2t}\sin 5t - \frac{4}{5}e^{-2t}\cos 5t$$. (b) (15 pts) Use Laplace Transforms to solve: $$y'' - 2y' - 3y = e^t$$, $y(0) = 1$, $y'(0) = 0$ Solution: $$\mathcal{L}\left\{y'' - 2y' - 3y\right\} = \mathcal{L}\left\{e^{-t}\right\} = \frac{1}{s+1}$$ Thus $$(s^{2} - 2s - 3)\mathcal{L}{y} - y(0)(s - 2) - y'(0) = \frac{1}{s+1}$$ $$(s^{2} - 2s - 3)\mathcal{L}{y} = s - 2 + \frac{1}{s-1} = \frac{s^{2} - 3s + 3}{s-1}$$ • $$\mathcal{L}\{y\} = \frac{s^2 - 3s + 3}{(s-1)(s-3)(s+1)}$$ $$\frac{s^2 - 3s + 3}{(s-1)(s-3)(s+1)} = \frac{A}{s-1} + \frac{B}{s-3} + \frac{C}{s+1} = -\frac{1}{4(s-1)} + \frac{3}{8(s-3)} + \frac{7}{8(s+1)}$$ Thus $$\mathcal{L}^{-1}\{y\} = -\frac{1}{4}e^t + \frac{3}{8}e^{3t} + \frac{7}{8}e^{-t}$$ $$y'' - 2y' - 3y = e^t$$ $y(0) = 1$, Exact solution is: $y(t) = -\frac{1}{4}e^t + \frac{3}{8}e^{3t} + \frac{7}{8}e^{-t}$ $y'(0) = 0$ 4. (a) (15 pts) Find the eigenvalues and eigenfunctions for $$y'' + \lambda y = 0$$ $y(0) = y(\pi) = 0$ Be sure to consider the cases $\lambda < 0, \lambda = 0$, and $\lambda > 0$. Solution: Case I: $\lambda < 0$, let $\lambda = -\alpha^2$, $\alpha \neq 0$. The DE becomes $$y'' - \alpha^2 y = 0$$ so $$y(x) = C_1 e^{\alpha x} + C_2 e^{-\alpha x}$$ The boundary conditions imply $$C_1 + C_2 = 0$$ $$C_1 e^{\alpha \pi} + C_2 e^{-\alpha \pi} = 0$$, Solution is: $\{C_1 = 0, C_2 = 0\}$. Thus y = 0, and there are no negative eigenvalues. Case II: $\lambda = 0$. The DE becomes $$y'' = 0$$ so y = Ax + B. The BCs imply A = B = 0, so 0 is not an eigenvalue. Case III: $\lambda > 0$. Let $\lambda = \beta^2$ where $\beta \neq 0$. The DE becomes $$y'' + \beta^2 y = 0$$ so $$y(x) = C_1 \sin \beta x + C_2 \cos \beta x$$ Therefore $$y(0) = C_2 = 0$$ $$y(\pi) = C_1 \sin \beta \pi = 0$$ For a nontrivial solution we must have $\beta = n, n = 1, 2, ...$ or $$\lambda = n^2, n = 1, 2, \dots$$ These are the eigenvalues. The eigenfuntions are $$y_n(x) = D_n \sin nx$$ 4(b) (10 pts) Compute the Wronskian for the solutions to the differential equation $$y'' - 2y' + 2y = 0$$ Solution: The characteristic equation is $$r^2 - 2r + 2 = 0$$ SO $$r = \frac{2 \pm \sqrt{4 - 4(2)}}{2} = 1 \pm i$$ Hence the solution is: $y(x) = C_1 e^x \sin x + C_2 e^x \cos x$ $$W[e^{x}\sin x, e^{x}\cos x] = \begin{vmatrix} e^{x}\sin x & e^{x}\cos x \\ e^{x}\sin x + e^{x}\cos x & e^{x}\cos x - e^{x}\sin x \end{vmatrix} = -e^{2x}$$ or $$W[e^{x}\cos x, e^{x}\sin x] = -\begin{vmatrix} e^{x}\sin x & e^{x}\cos x \\ e^{x}\sin x + e^{x}\cos x & e^{x}\cos x - e^{x}\sin x \end{vmatrix} = e^{2x}$$ 5. (a) (15 pts) Find the first five nonzero terms of the Fourier cosine series for the function $$f(x) = \begin{cases} 0 & 0 \le x \le \frac{\pi}{2} \\ -4 & \frac{\pi}{2} \le x \le \pi \end{cases}$$ Be sure to give the Fourier series with these terms in it. Solution: $L = \pi$ $$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx$$ Where $$a_{n} = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{2}{\pi} \left[\int_{0}^{\frac{\pi}{2}} 0 \cos nx dx + \int_{\frac{\pi}{2}}^{\pi} (-4) \cos nx dx \right]$$ $$= -\frac{8}{n\pi} \sin nx \Big|_{\frac{\pi}{2}}^{\pi} = -\frac{8}{n\pi} \left[\sin n\pi - \sin\left(\frac{n\pi}{2}\right) \right] = \frac{8}{n\pi} \left[\sin\frac{n\pi}{2} \right]$$ $$a_{0} = \frac{1}{L} \int_{0}^{L} f(x) dx = \frac{1}{\pi} \int_{\frac{\pi}{2}}^{\pi} (-4) dx = -2$$ Thus $$f(x) = \sum_{n=1}^{\infty} a_n \cos nx = -2 + \frac{8}{\pi} \cos x + 0 \cos 2x - \frac{8}{3\pi} \cos 3x + 0 \cos 4x + \frac{8}{5\pi} \cos 5x + 0 \cos 6x - \frac{8}{7\pi} \cos 7x \cdots$$ (b) (10 pts) Sketch the graph of the function represented by the Fourier cosine series in 5 (a) on $-\pi \le x \le 3\pi$. 6. (25 pts) Solve PDE $$u_{xx} = 4u_{tt}$$ BCS $u_x(0,t) = 0$ $u_x(\pi,t) = 0$ ICs $u(x,0) = 0$ $u_t(x,0) = -9\cos(4x) + 16\cos(8x)$ You must derive the solution. Your solution should not have any arbitrary constants in it. Solution: Let u(x,t) = X(x)T(t). Then differentiating and substituting in the PDE yields $$X''T = 4XT''$$ $$\Rightarrow$$ $$\frac{X''}{Y} = 4\frac{T''}{T}$$ Using the argument that the left hand side is purely a function of x and the right hand side is purely a function of t, and the only way that they can be equal is if they are equal to a constant, we get $$\frac{X''}{X} = 4\frac{T''}{T} = k$$ k a constant This yields the two ordinary differential equations $$X'' - kX = 0$$ and $T'' - \frac{1}{4}kT = 0$ The boundary condition $u_X(0,t) = 0$ implies, since $u_X(x,t) = X'(x)T(t)$ that X'(0)T(t) = 0. We cannot have T(t) = 0, since this would imply that u(x,t) = 0. Thus X'(0) = 0. Similarly, the boundary condition $u_X(\pi,t) = 0$ leads to $X'(\pi) = 0$. We now have the following boundary value problem for X(x): $$X'' - kX = 0$$ $X'(0) = X'(\pi) = 0$ For k > 0, the only solution is X = 0. For k = 0 we have X = Ax + B. X'(x) = A, so the BCs imply that X(x) = B, $B \neq 0$ is a nontrivial solution corresponding to the eigenvalue k = 0. For k < 0, let $-k = \alpha^2$, where $\alpha \neq 0$. Then we have the equation $$X'' + \alpha^2 X = 0$$ and $$X(x) = c_1 \sin \alpha x + c_2 \cos \alpha x$$ $$X'(x) = c_1 \alpha \cos \alpha x - c_2 \alpha \sin \alpha x$$ $$X'(0) = c_1 \alpha = 0$$ so $c_1 = 0$. $$X'(\pi) = -c_2 \alpha \sin \alpha \pi = 0$$ Therefore $\alpha = n$, n = 1, 2, ... and the solution is $$k = -n^2$$ $X_n(x) = a_n \cos nx$ $n = 1, 2, 3, ...$ The case k = 0 implies that the equation for T becomes T'' = 0, so T = At + B. The initial condition u(x,0) = 0 implies X(x)T(0) = 0 so that T(0) = 0. Thus B = 0 and T = At for k = 0. Substituting the values of $k = -n^2$ into the equation for T(t) leads to $$T^{\prime\prime} + \frac{n^2}{4}T = 0$$ which has the solution $$T_n(t) = B_n \sin \frac{nt}{2} + C_n \cos \frac{nt}{2}, \quad n = 1, 2, 3, ...$$ The initial condition u(x,0) = 0 implies X(x)T(0) = 0 so that T(0) = 0. Thus $c_n = 0$. We now have the solutions $$u_n(x,t) = A_n \cos nx \sin \frac{nt}{2} \qquad n = 1, 2, 3, \dots$$ $$u_0(x,t) = A_0 t$$ Since the boundary conditions and the equation are linear and homogeneous, it follows that $$u(x,t) = \sum_{n=0}^{\infty} u_n(x,t) = A_0 t + \sum_{n=1}^{\infty} A_n \cos nx \sin \frac{nt}{2}$$ satisfies the PDE, the boundary conditions, and the first initial condition. Since $$u_t(x,t) = A_0 + \sum_{n=1}^{\infty} A_n \left(\frac{n}{2}\right) \cos nx \cos \frac{nt}{2}$$ the last initial condition leads to $$u_t(x,0) = -9\cos(4x) + 16\cos(8x) = A_0 + \sum_{n=1}^{\infty} A_n\left(\frac{n}{2}\right)\cos nx.$$ Matching the cosine terms on both sides of this equation leads to $A_4\left(\frac{4}{2}\right) = -9$ so that $A_4 = -\frac{9}{2}$ and $A_8\left(\frac{8}{2}\right) = 16$ so that $A_8 = 4$. All of the other constants must be zero, since there are no cosine terms or constant terms on the left to match with. Thus $$u(x,t) = -\frac{9}{2}\cos 4x \sin 2t + 4\cos 8x \sin 4t$$ ## 7. (a) (15 pts) Find the power series solution to $$y'' + 2xy' - 4y = 0$$ near x = 0. Be sure to give the recurrence relation. Indicate the two linearly independent solutions and give the first six nonzero terms of the solution. Solution: $$y(x) = \sum_{n=0}^{\infty} a_n x^n$$ $$y'(x) = \sum_{n=1}^{\infty} a_n(n) x^{n-1}$$ $$y''(x) = \sum_{n=2}^{\infty} a_n(n) (n-1) x^{n-2}$$ Substituting into the DE we have $$\sum_{n=2}^{\infty} a_n(n)(n-1)x^{n-2} + 2\sum_{n=1}^{\infty} a_n(n)x^n - 4\sum_{n=0}^{\infty} a_nx^n = 0$$ $$\sum_{n=2}^{\infty} a_n(n)(n-1)x^{n-2} + \sum_{n=1}^{\infty} a_n(2n-4)x^n - 4a_0 = 0$$ We now shift the first summation in the last equation above by letting k = n - 2 or n = k + 2. $$\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1)x^k + \sum_{n=1}^{\infty} a_n(2n-4)x^n - 4a_0 = 0$$ We write the first term of the first sum separately and replace k and n by m to get $$\sum_{m=1}^{\infty} [a_{m+2}(m+2)(m+1) + a_m(2m-4)]x^m - 4a_0 + a_2(2)(1) = 0$$ Therefore $$a_2 = 2a_0$$ and the recurrence relation is $$a_{m+2}(m+2)(m+1) + a_m(2m-4) = 0$$ $m = 1, 2, ...$ or $$a_{m+2} = \frac{2(2-m)}{(m+2)(m+1)} a_m \quad m = 1, 2, \dots$$ $m = 1 \Rightarrow$ $$a_3 = \frac{2(1)}{(3)(2)}a_1 = \frac{1}{3}a_1$$ $m = 2 \Rightarrow$ $$a_4 = 0$$ $m = 3 \Rightarrow$ $$a_5 = \frac{2(-1)}{(5)(4)}a_3 = \frac{-2}{(5)(4)(3)}a_1$$ $m=4 \Rightarrow a_6=0$. In fact all of the even coefficients are zero except for a_0 and a_2 . $m=5 \Rightarrow$ $$a_7 = \frac{2(-3)}{(7)(6)}a_5 = \frac{(2)(2)(3)}{(7)(6)(5)(4)(3)}a_1$$ $$y(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$ $$= a_0 [1 + 2x] + a_1 \left[x + \frac{1}{3} x^3 + \frac{-2}{(5)(4)(3)} x^5 + \frac{(2)(2)(3)}{(7)(6)(5)(4)(3)} x^7 + \cdots \right]$$ (b) (10 pts) Solve $$y'' + 2y' - 3y = 5\sin 3t \ y(0) = -\frac{1}{2} \ y'(0) = -\frac{5}{6}$$ Solution: The homogeneous equation is $$y'' + 2y' - 3y = 0$$ so the characteristic equation is $$p(r) = r^2 + 2r - 3 = (r+3)(r-1) = 0$$ Thus r = 1, -3 and the homogeneous solution if $$y_h(x) = C_1 e^t + C_2 e^{-3t}$$ We present two methods for finding a particular solution for $$y'' + 2y' - 3y = 5\sin 3t \tag{*}$$ I. Complex Variable method: Consider a companion equation $$v'' + 2v' - 3v = 5\cos 3t \tag{**}$$ Multiplying the (*) by i, adding the result to (* *) and letting w = v + iy we get $$w'' + 2w' - 3w = 5(\cos 3t + i\sin 3t) = 5e^{3it}$$ Hence $$w_p = \frac{5e^{3it}}{p(3i)} = \frac{5}{-12+6i}e^{3it} = -\frac{5}{6}\left(\frac{1}{2-i}\right)e^{3it}$$ $$= -\frac{5}{6}\left(\frac{1}{2-i}\right)\left(\frac{2+i}{2+i}\right)(\cos 3t + i\sin 3t) = -\frac{1}{6}(2\cos 3t - \sin 3t + i[\cos 3t + 2\sin 3t])$$ Thus $$y_p = -\frac{1}{6} \left[\cos 3t + 2\sin 3t \right]$$ II. Alternative Method: $$y_p(t) = A\cos 3t + B\sin 3t$$ Then $$y_p'(t) = -3A \sin 3t + 3B \cos 3t$$ $y_p''(t) = -9A \cos 3t - 9B \sin 3t$ $$y_p''(t) + 2y_p'(t) - 3y_p(t) = -12A\cos 3t - 12B\sin 3t - 6A\sin 3t + 6B\cos 3t = 5\sin 3t$$ Thus $$-12A + 6B = 0$$ $$-6A - 12B = 5$$, Solution is: $\left\{B = -\frac{1}{3}, A = -\frac{1}{6}\right\}$ so $$y_p = -\frac{1}{6}\cos 3t - \frac{1}{3}\sin 3t$$ as before. Therefore $$y_g(t) = C_1 e^t + C_2 e^{-3t} - \frac{1}{6} \cos 3t - \frac{1}{3} \sin 3t$$ Applying the initial conditions we have $$y_g(0) = C_1 + C_2 - \frac{1}{6} = -\frac{1}{2}$$ $$y'_g(0) = C_1 - 3C_2 - 1 = -\frac{5}{6}$$ $$C_1 + C_2 = -\frac{1}{3}$$ $$C_1 - 3C_2 = \frac{1}{6}$$, Solution is: $\left\{ C_2 = -\frac{1}{8}, C_1 = -\frac{5}{24} \right\}$ Therefore $$y(t) = -\frac{5}{24}e^t + -\frac{1}{8}e^{-3t} - \frac{1}{6}\cos 3t - \frac{1}{3}\sin 3t$$ $$y'' + 2y' - 3y = 5\sin 3t$$ $$y(0) = -\frac{1}{2}$$, Exact solution is: $y(t) = -\frac{1}{6}\cos 3t - \frac{1}{3}\sin 3t - \frac{5}{24}e^t - \frac{1}{8}e^{-3t}$, $y'(0) = -\frac{5}{6}$ ## Part II: Choose only one question. 8. (a) (13 pts) Given that x and e^x are solutions of the homogeneous equation associated with $$(1-x)y'' + xy' - y = 2(x-1)^2 e^{-x}$$ use this fact to solve the nonhomogeneous equation. Solution: We use Variation of Parameters to solve the equation. Therefore $$y(x) = xv_1 + v_2e^x$$ The two equations for v_1' and v_2' are $$xv_1' + v_2'e^x = 0$$ $$v_1' + v_2' e^x = \frac{f(x)}{a(x)} = -\frac{2(x-1)^2 e^{-x}}{(x-1)} = 2(1-x)e^{-x}$$ Then $$v_1' = \frac{\begin{vmatrix} 0 & e^x \\ 2(1-x)e^{-x} & e^x \end{vmatrix}}{\begin{vmatrix} x & e^x \\ 1 & e^x \end{vmatrix}} = \frac{-2(1-x)}{(x-1)e^x} = +2e^{-x}$$ $$v_2' = \frac{\begin{vmatrix} x & 0 \\ 1 & 2(1-x)e^{-x} \end{vmatrix}}{\begin{vmatrix} x & e^x \\ 1 & e^x \end{vmatrix}} = \frac{2x(1-x)e^{-x}}{(x-1)e^x} = -2xe^{-2x}$$ Thus $$v_1 = -2e^{-x} + C_1$$ $$v_2 = \int (-2xe^{-2x}) dx = xe^{-2x} + \frac{1}{2}e^{-2x} + C_2$$ Thus $$y(x) = C_1 x + C_2 e^x - 2xe^{-x} + xe^{-x} + \frac{1}{2}e^{-x}$$ $$= C_1 x + C_2 e^x - xe^{-x} + \frac{1}{2}e^{-x}$$ SNB check $(1-x)y'' + xy' - y = 2(x-1)^2 e^{-x}$, Exact solution is: $y(x) = -\frac{1}{2}e^{-x}(2x-1) + C_1x + C_2e^x$ 8 (b) (i) (8 pts) Find the Fourier sine series for f(x) = x on $0 < x < \pi$ Solution: $L = \pi$ $$f(x) = \sum_{n=1}^{\infty} a_n \sin nx$$ $$A_n = \frac{2}{\pi} \int_0^{\pi} x \sin nx dx = \frac{2}{n\pi} \left[-x \cos nx \Big|_0^{\pi} + \int_0^{\pi} \cos nx dx \right]$$ $$= \frac{2}{n\pi} \left[(-1)^{n+1} \pi + \frac{\sin nx}{n} \Big|_0^{\pi} \right] = \frac{2(-1)^{n+1}}{n}, \quad n = 1, 2, \dots$$ Thus $$f(x) = x = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin nx$$ 8 (b) (ii) (4 pts) Given that $$\int_{0}^{\pi} x^{2} dx = \frac{\pi}{2} \sum_{n=1}^{\infty} A_{n}^{2}$$ where the $A_n s$ are the Fourier coefficients in the expansion in 8 (b) (i) show that $$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$ Solution: From the given formula with the value of A_n calculated above $$\int_0^{\pi} x^2 dx = \frac{\pi}{2} \sum_{n=1}^{\infty} 4 \left[\frac{(-1)^{n+1}}{n} \right]^2 = 2\pi \sum_{n=1}^{\infty} \frac{1}{n^2}$$ But $\int_0^{\pi} x^2 dx = \frac{1}{3}\pi^3$ so we have $$\frac{1}{3}\pi^3 = 2\pi \sum_{n=1}^{\infty} \frac{1}{n^2}$$ Which is the result. 9. (a) (15 pts) Find the eigenvalues and eigenfunctions for $$x^2y'' + xy' + \lambda y = 0$$ $y(1) = y(e^{\pi}) = 0$ Be sure to consider the cases $\lambda < 0, \lambda = 0$, and $\lambda > 0$. Solution: Note that this is an Euler equation!! Since $p = 1, q = \lambda$ the indicial equation is $$r^2 + (p-1)r + q = r^2 - \lambda = 0$$ I. $\lambda < 0$. Let $\lambda = -\alpha^2$ where $\alpha \neq 0$. Then the indicial equation is $$r^2 - \alpha^2 = 0$$ so $m = \pm \alpha$. Thus $$y = c_1 x^{\alpha} + c_2 x^{-\alpha}$$ The boundary conditions imply $$c_1 + c_2 = 0$$ $$c_1 e^{\alpha \pi} + c_2 e^{-\alpha \pi} = 0$$ This leads to $c_1 = c_2 = 0$, so y = 0 and there are no negative eigenvalues. II. $\lambda = 0$. The DE for this case is $$x^2y'' + xy' = 0$$ or $$xy'' + y' = 0$$ Let v = y' so we have $$xv' + v = 0$$ $$(xv)' = 0$$ Then $v = \frac{c_1}{x}$, and $y = c_1 \ln x + c_2$. The BCs lead to $$c_1 + c_2 = 0$$ $$c_1 \ln e^{\pi} + c_2 = 0$$ or $$c_1 + c_2 = 0$$ $$\pi c_1 + c_2 = 0$$ Again we have $c_1 = c_2 = 0$, so $\lambda = 0$ is not an eigenvalue. III. $\lambda > 0$. Let $\lambda = \beta^2$ where $\beta \neq 0$. The indicial equation is $$r^2 + \beta^2 = 0$$ SO $$r = \pm \beta i$$ Thus $$y = c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x)$$ The BCs imply $$c_1 = 0$$ c_2 is arbitrary $$sin(\beta\pi) = 0 \Rightarrow \beta = n \text{ for } n = 1, 2, \dots$$ Eigenvalues: $$\lambda_n=\beta^2=n^2\;n=1,2,\dots$$ Eigenfunctions: $$y_n = c_n \sin(n \ln x)$$ (b) (10 pts) Show that if the equation $$\left(\frac{y^2}{2} + 2ye^x\right)dx + (y + e^x)dy = 0$$ is multiplied by e^x , then the resulting equation is exact and then solve this equation. Solution: Multiplying by e^x we have $$\left(\frac{y^2e^x}{2} + 2ye^{2x}\right)dx + \left(ye^x + e^{2x}\right)dy = 0$$ SO $$M_y = \frac{\partial \left(\frac{y^2 e^x}{2} + 2ye^{2x}\right)}{\partial y} = ye^x + 2e^x = N_x = \frac{\partial \left(ye^x + e^{2x}\right)}{\partial x}$$ so the multiplied equation is now exact. Hence there exists f(x, y) such that $$f_X = M = \frac{y^2 e^x}{2} + 2ye^{2x}$$ $$f_y = N = ye^x + e^{2x}$$ Starting with f_y and integrating with respect to y we have $$f(x,y) = \frac{y^2}{2}e^x + ye^{2x} + g(x)$$ SO $$f_x = \frac{y^2}{2}e^x + 2ye^{2x} + g'(x) = M = \frac{y^2e^x}{2} + 2ye^{2x}$$ Thus g'(x) = 0 so g(x) = k where k is a constant. Thus the solution is given by $$\frac{y^2}{2}e^x + ye^{2x} = C$$ # **Table of Laplace Transforms** $$f(t) \qquad f(s)$$ $$\frac{t^{n-1}}{(n-1)!} \quad \frac{1}{s^n} \qquad n \ge 1 \quad s > 0$$ $$\sin ax \qquad \frac{a}{s^2 + a^2} \qquad s > a$$ $$\cos ax \qquad \frac{s}{s^2 + a^2} \qquad s > a$$ $$e^{-bt}f(t) \qquad f(s+b)$$ $$t^n f(t) \qquad (-1)^n \frac{d^n}{ds^n} \quad f(s)$$ ## **Table of Integrals** $$\int \tan x \sin x dx = -\sin x + \ln(\sec x + \tan x) + C$$ $$\int xe^{x} dx = xe^{x} - e^{x} + C$$ $$\int x \sin x dx = \sin x - x \cos x + C$$ $$\int x \cos x dx = \cos x + x \sin x + C$$ $$\int \sin ax \sin bx dx = \frac{1}{2(-a+b)} \sin(-a+b)x - \frac{1}{2(a+b)} \sin(a+b)x + C \quad a^{2} \neq b^{2}$$ $$\int \sin ax \cos bx dx = -\frac{1}{2} \frac{\cos(a+b)x}{a+b} + \frac{1}{2} \frac{\cos(-a+b)x}{-a+b} + C \quad a^{2} \neq b^{2}$$ $$\int \cos ax \cos bx dx = \frac{1}{2(-a+b)} \sin(-a+b)x + \frac{1}{2(a+b)} \sin(a+b)x + C \quad a^{2} \neq b^{2}$$ $$\int \ln x dx = x \ln x - x + C$$