Name	Lecturer

Ma 221	Final Exam	5/8/07
Print Name:		
Lecture Section:		
I pledge my honor that I have abided b	y the Stevens Honor System.	
This exam consists of 8 problem problem is indicated. The total i	ns. You are to solve all of these problems. The number of points is 200.	point value of each
If you need more work space, co on. Be sure that you do all prob	ontinue the problem you are doing on the othe lems.	r side of the page it is
	ell phone, or computer while taking this exam. not be given for work not reasonably supporte	
There are tables giving Laplac	ce transforms and integrals at the end of the	exam.
Score on Problem #1	-	
#2	_	
#3	_	
#4	_	
#5	-	
#6	=	
#6 #7		

- 1. Solve
- (a) (8 pts)

$$(2y^2x - 2y^3)dx + (4y^3 - 6y^2x + 2yx^2)dy = 0$$

(b) (7 pts) Solve

$$xy' - 2y = \frac{2}{3}x^5 \ y(1) = \frac{2}{9}$$

Name		

1 (c) (10 pts) Find a general solution of

$$y'' - y' - 2y = e^{-5t} + 3e^{2t}$$

Name		
ranic		

2. (a) (12 pts) Find a general solution of

$$y'' + 2y' - 3y = 5\sin 3t - 3 + 3t^2$$

Name		
Tanic		

2(b) (13 pts.) Find a general solution of

$$y'' - 2y' + y = \frac{e^x}{x}$$

3. (a) (10 pts.) Let

$$g(t) = \begin{cases} 1 & \text{for } 0 \le t \le 1 \\ 0 & \text{for } t \ge 1 \end{cases}$$

Use the definition of the Laplace transform to find $\mathcal{L}\{g(t)\}$

(b) (15 pts.) Solve using Laplace Transforms:

$$y'' + 4y = 4x$$
 $y(0) = 1$, $y'(0) = 5$

4.) a.) (10 pts.) Use separation of variables, u(x,t) = X(x)T(t), to find two ordinary differential equations which X(x) and T(t) must satisfy to be a solution of

$$-12x^2t^5\frac{\partial^2 u}{\partial t^2} + (x+2)^3(t+2)^5\frac{\partial u}{\partial x} = 0.$$

Note: Do **not** solve these ordinary differential equations.

b.) (15 pts.) Find the eigenvalues and eigenfunctions of

$$y'' - 4\lambda y' + 4\lambda^2 y = 0$$
 $y(0) = 0$ $y(1) + y'(1) = 0$

5. (a) (15 pts.) Find the first five nonzero terms of the Fourier sine series for the function

$$f(x) = \begin{cases} 2 & 0 \le x \le \frac{\pi}{4} \\ 0 & \frac{\pi}{4} < x \le \frac{\pi}{2} \end{cases}$$

Be sure to give the Fourier series with these terms in it.

(b) (10 pts.) Sketch the graph of the function represented by the Fourier sine series in 5 (a) on $-\pi \le x \le \pi$.

Name		
Tanne		

6 (25 pts.)

PDE
$$u_{xx} - 8u_t = 0$$

BCs $u(0,t) = 0$ $u_x(1,t) = 0$
ICs $u(x,0) = -2\sin\frac{3\pi}{2}x + 10\sin\frac{9\pi}{2}x$

You must derive the solution. Your solution should not have any arbitrary constants in it. Show **all** steps.

Name		
1 value		

7. (a) (15 pts.) Solve the equation

$$y'' + 3xy' + 2y = 0$$

near x = 0. Be sure to give the recurrence relation and the first 3 nonzero terms in each linearly independent solution.

Name		

Lecturer		

(b) (10 pts.) Find a second order homogeneous, ordinary differential equation with real constant coefficients for which

$$-5.2e^{-3t}\cos 5t$$
 and $\frac{2}{3}e^{-3t}\sin 5t$

are the solutions.

Name		
Tanne		

_		
Lecturer		
Lecturer		

8 (a) (12 pts.) Find an integrating factor to make

$$y^2\cos x dx + (4 + 5y\sin x)dy = 0$$

exact. Then use it to solve the equation.

(b) (13 pts.) Find

$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+4s+13}\right\}$$

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$n \ge 1$	<i>s</i> > 0
e ^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		<i>s</i> > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		

Table of Integrals

$\int \sin^2 x dx = -\frac{1}{2}\cos x \sin x + \frac{1}{2}x + C$
$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$
$\int x \cos bx dx = \frac{1}{b^2} (\cos bx + bx \sin bx) + C$
$\int x \sin bx = \frac{1}{b^2} (\sin bx - bx \cos bx) + C$
$\int \left(\frac{e^{-t}}{1+e^t}\right) dt = -e^{-t} - \ln(e^t) + \ln(1+e^t) + C$
$\int xe^{ax}dx = \frac{1}{a^2}(axe^{ax} - e^{ax}) + C$