Name	Lecturer
1 (dille	Ecctarci

Ma 221	Final Exam	5/5/08
Print Name:		
Lecture Section:		
I pledge my honor that I have abided by	the Stevens Honor System.	
This exam consists of 8 problem problem is indicated. The total n	s. You are to solve all of these problems. The umber of points is 200.	point value of each
If you need more work space, co on. Be sure that you do all proble	ntinue the problem you are doing on the othe ems.	er side of the page it is
	Il phone, or computer while taking this examenot be given for work not reasonably supported	
There are tables giving Laplac	e transforms and integrals at the end of the	e exam.
Score on Problem #1		
#2		
#3		
#4		
#5		
#6		
#7		
π /		

1. Solve

(a) (8 pts)

$$(x^2 + 1)y' + 3xy = 6x$$
 $y(0) = -1$

(b) (7 pts) Solve

$$\sin(x+y)dx + (2y + \sin(x+y))dy = 0$$

Name		
Tanne		

1 (c) (10 pts) Find a general solution of

$$y'' + 2y' - 3y = 3t + 4 + e^{-3t}$$

2. (a) (12 pts) Find a general solution of

$$y'' + 4y = \cos 2t - 2\sin t$$

2(b) (13 pts.) Use the method of Variation of Parameters to find a general solution of

$$y'' + 2y' + y = t^5 e^{-t}$$

Name		
1 tuille		

3. (a) (10 pts.) Let

$$g(t) = \begin{cases} t \text{ for } 0 \leq t \leq 1 \\ \\ 1 \text{ for } 1 < t < \infty \end{cases}$$
 Use the definition of the Laplace transform to find $\mathcal{L}\{g(t)\}$

Name		

(b) (15 pts.) Solve using Laplace Transforms:

$$y'' - y' - 2y = e^{2t}$$
 $y(0) = 0$, $y'(0) = -1$

4.) a.) (10 pts.) Use separation of variables, u(x,t) = X(x)T(t), to find two ordinary differential equations which X(x) and T(t) must satisfy to be a solution of

$$-3x^4t^3\frac{\partial^2 u}{\partial x^2} + (x+6)^5(t-2)^3\frac{\partial u}{\partial t} = 0.$$

Note: Do **not** solve these ordinary differential equations.

b.) (15 pts.) Find the eigenvalues and eigenfunctions for

$$x^2y'' + xy' + \lambda y = 0$$
 $y(1) = y(e^{\pi}) = 0$

Be sure to consider the cases $\lambda < 0, \lambda = 0$, and $\lambda > 0$.

Name

5. (a) (15 pts.) Find the first five nonzero terms of the Fourier cosine series for the function

$$f(x) = 2 - x;$$
 0 < x < 2

Be sure to give the Fourier series with these terms in it.

(b) (10 pts.) Sketch the graph of the function represented by the Fourier cosine series in 5 (a) on -2 < x < 6.

Name		
Tanne		

6 (25 pts.)

PDE
$$u_{tt} = 4u_{xx}$$

BCs $u_x(0,t) = 0$ $u_x(\pi,t) = 0$
ICs $u(x,0) = 2\cos(3x) - 5\cos(5x) + 7\cos(6x)$
 $u_t(x,0) = 0$

You must derive the solution. Your solution should not have any arbitrary constants in it. Show **all** steps.

Name		

7. (a) (10 pts.) Consider the equation

$$(x^2 - 8x + 15)y'' + (x + 2)y' + 3y = 0$$

- i.) Find the singular points of the above equation
- ii.) Find a **minimum value** for the radius of convergence of a power series solution about x = 2 of the above equation. (Note: You do NOT have to find the power series solution.)

Name		

T 4		
Lecturer		
Locturer		

(b) (15 pts.) Find the first 6 nonzero terms of each linearly independent power series solution about x = 0 for the DE:

$$y^{\prime\prime} - x^3 y^{\prime} + y = 0$$

Be sure to give the recurrence relation.

_		
Lecturer		
Locturoi		

8 (a) (12 pts.) Consider:

$$y'' + p(t)y' + q(t)y = 1$$

Given that $y_1(t) = t$ and $y_2(t) = t^2$ are solutions to the above equation, find p(t) and q(t).

(b) (13 pts.) Find

$$\mathcal{L}^{-1}\left\{\frac{5s^2 - 5s - 4}{(s - 3)(s^2 + 4)}\right\}$$

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$n \ge 1$	<i>s</i> > 0
e ^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		<i>s</i> > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		

Table of Integrals

$\int \sin^2 x dx = -\frac{1}{2}\cos x \sin x + \frac{1}{2}x + C$		
$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$		
$\int x \cos bx dx = \frac{1}{b^2} (\cos bx + bx \sin bx) + C$		
$\int x \sin bx = \frac{1}{b^2} (\sin bx - bx \cos bx) + C$		
$\int \left(\frac{e^{-t}}{1+e^t}\right) dt = -e^{-t} - \ln(e^t) + \ln(1+e^t) + C$		
$\int xe^{ax}dx = \frac{1}{a^2}(axe^{ax} - e^{ax}) + C$		