Ma 221 Final Exam 5/7/09

Print Name: __________________________

Lecture Section: __________

I pledge my honor that I have abided by the Stevens Honor System.

This exam consists of 8 problems. You are to solve all of these problems. The point value of each problem is indicated. The total number of points is 200.

If you need more work space, continue the problem you are doing on the other side of the page it is on. Be sure that you do all problems.

You may not use a calculator, cell phone, or computer while taking this exam. All work must be shown to obtain full credit. Credit will not be given for work not reasonably supported. When you finish, be sure to sign the pledge.

There are tables giving Laplace transforms and integrals at the end of the exam.

Score on Problem #1 ________
#2 ________
#3 ________
#4 ________
#5 ________
#6 ________
#7 ________
#8 ________

Total Score ________
1. Solve
(a) (8 pts)
\[x \cos x \, dx + (1 - 6y^5) \, dy = 0 \quad y(\pi) = 0 \]

(b) (7 pts) Solve
\[y' = \frac{2 + ye^{xy}}{2y - xe^{xy}} \]
1 (c) (10 pts) Find a general solution of
\[y'' - y' - 2y = 64e^{-t} + 4t^2 \]
2. (a) (12 pts) Find a general solution of

\[y'' - 2y' + y = 4 \sin x \quad x > 0 \]

2(b) (13 pts) Find a general solution of

\[x^2y'' - xy' = x^3 e^x, \quad x > 0 \]
3. (a) (10 pts.) Let

\[g(t) = \begin{cases}
 e^t & \text{for } 0 \leq t \leq 2 \\
 3 & \text{for } 2 < t < \infty
\end{cases} \]

Use the definition of the Laplace transform to find \(\mathcal{L}\{g(t)\} \).
(b) (15 pts.) Solve using Laplace Transforms:

$$y'' - 3y' + 4y = 0 \quad y(0) = 1, \quad y'(0) = 5$$
4. a.) (10 pts.) Use separation of variables, \(u(x,t) = X(x)T(t) \), to find two ordinary differential equations which \(X(x) \) and \(T(t) \) must satisfy to be a solution of

\[
5x^2t^7 \frac{\partial^3 u}{\partial x^2 \partial t} + (x + 2)^3 (t^2 + 10)^5 \frac{\partial^2 u}{\partial t^2} = 0
\]

Note: Do not solve these ordinary differential equations.

b.) (15 pts.) Find the eigenvalues and eigenfunctions for

\[
y'' - 4\lambda y' + 4\lambda^2 y = 0 \quad y'(1) = 0, \quad y(2) + 2y'(2) = 0
\]
5. (a) (15 pts.) Find the first four nonzero terms of the Fourier sine series for the function

\[f(x) = \begin{cases}
 x ; & 0 < x < \pi/2 \\
 0 ; & \pi/2 < x < \pi
\end{cases} \]

Be sure to give the Fourier series with these terms in it.

(b) (10 pts.) Sketch the graph of the function represented by the Fourier sine series in 5 (a) on \(-\pi < x < 3\pi\).
6 (25 pts.)

PDE \quad u_t = 3u_{xx}

BCs \quad u(0,t) = 0 \quad u_x(2,t) = 0

IC \quad u(x,0) = 2 \sin\left(\frac{3\pi}{4}x\right) - 7 \sin\left(\frac{5\pi}{4}x\right)

You must derive the solution. Your solution should not have any arbitrary constants in it. Show all steps.
7. (a) (10 pts.) Solve

\[y'' - 4y' + 13y = 0; \quad y(0) = 0, \quad y(\pi) = 0 \]

(b) (15 pts.) Find the first 6 nonzero terms of the power series solution about \(x = 0 \) for the DE:

\[y'' + 2x^2y' + 2xy = 0 \]

Be sure to give the recurrence relation.
8 (a) (12 pts.) Solve

\[x \frac{dy}{dx} = 3y + x^2y^{-3} \]

(b) (13 pts.) Find

\[\mathcal{L}^{-1} \left\{ \frac{s^2 + s + 6}{s(s - 1)(s - 3)} \right\} \]
Table of Laplace Transforms

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$F(s) = \mathcal{L}{f}(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{t^{n-1}}{(n-1)!}$</td>
<td>$\frac{1}{s^n}$</td>
</tr>
<tr>
<td>e^{at}</td>
<td>$\frac{1}{s-a}$</td>
</tr>
<tr>
<td>$\sin bt$</td>
<td>$\frac{b}{s^2 + b^2}$</td>
</tr>
<tr>
<td>$\cos bt$</td>
<td>$\frac{s}{s^2 + b^2}$</td>
</tr>
<tr>
<td>$e^{at}f(t)$</td>
<td>$\mathcal{L}{f}(s-a)$</td>
</tr>
<tr>
<td>$t^n f(t)$</td>
<td>$(-1)^n \frac{d^n}{ds^n}(\mathcal{L}{f}(s))$</td>
</tr>
</tbody>
</table>

Table of Integrals

<table>
<thead>
<tr>
<th>Integral</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int \sin^2 x , dx$</td>
<td>$-\frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$</td>
</tr>
<tr>
<td>$\int \cos^2 x , dx$</td>
<td>$\frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$</td>
</tr>
<tr>
<td>$\int x \cos bx , dx$</td>
<td>$\frac{1}{b^2} (\cos bx + bx \sin bx) + C$</td>
</tr>
<tr>
<td>$\int x \sin bx , dx$</td>
<td>$\frac{1}{b^2} (\sin bx - bx \cos bx) + C$</td>
</tr>
<tr>
<td>$\int \left(\frac{e^{-t}}{1+e^t} \right) , dt$</td>
<td>$-e^{-t} - \ln(e^t) + \ln(1 + e^t) + C$</td>
</tr>
<tr>
<td>$\int xe^{ax} , dx$</td>
<td>$\frac{1}{a^2} (ax e^{ax} - e^{ax}) + C$</td>
</tr>
</tbody>
</table>