Name	Lecturer
1 141110	

Ma 221	Final Exam	5/7/09
Print Name:		
Lecture Section:	_	
I pledge my honor that I have abide	ed by the Stevens Honor System.	
This exam consists of 8 prob problem is indicated. The tot	plems. You are to solve all of these problems. The cal number of points is 200.	point value of each
If you need more work space on. Be sure that you do all pro-	e, continue the problem you are doing on the othe roblems.	r side of the page it is
	r, cell phone, or computer while taking this exam. vill not be given for work not reasonably supporte	
There are tables giving Lap	place transforms and integrals at the end of the	e exam.
Score on Problem #1		
#2		
#3		
#4		
#5		
#6		
#7		
#8		
Total Score		

- 1. Solve
- (a) (8 pts)

$$x\cos x dx + (1 - 6y^5)dy = 0$$
 $y(\pi) = 0$

(b) (7 pts) Solve

$$y' = \frac{2 + ye^{xy}}{2y - xe^{xy}}$$

Name			
Tanne			

1 (c) (10 pts) Find a general solution of

$$y'' - y' - 2y = 64e^{-t} + 4t^2$$

2. (a) (12 pts) Find a general solution of

$$y'' - 2y' + y = 4\sin x \quad x > 0$$

2(b) (13 pts.) Find a general solution of

$$x^2y'' - xy' = x^3e^x, \ x > 0$$

3. (a) (10 pts.) Let

$$g(t) = \begin{cases} e^t \text{ for } 0 \le t \le 2 \\ \\ 3 \text{ for } 2 < t < \infty \end{cases}$$
 Use the definition of the Laplace transform to find $\mathcal{L}\{g(t)\}$.

(b) (15 pts.) Solve using Laplace Transforms:

$$y'' - 3y' + 4y = 0$$
 $y(0) = 1$, $y'(0) = 5$

4.) a.) (10 pts.) Use separation of variables, u(x,t) = X(x)T(t), to find two ordinary differential equations which X(x) and T(t) must satisfy to be a solution of

$$5x^2t^7\frac{\partial^3 u}{\partial x^2\partial t} + (x+2)^3(t^2+10)^5\frac{\partial^2 u}{\partial t^2} = 0$$

Note: Do **not** solve these ordinary differential equations.

b.) (15 pts.) Find the eigenvalues and eigenfunctions for Find the eigenvalues and eigenfunctions for

$$y'' - 4\lambda y' + 4\lambda^2 y = 0$$
 $y'(1) = 0$, $y(2) + 2y'(2) = 0$

5. (a) (15 pts.) Find the first four nonzero terms of the Fourier *sine* series for the function

$$f(x) = \begin{cases} x & ; & 0 < x < \pi/2 \\ 0 & ; & \pi/2 < x < \pi \end{cases}$$

Be sure to give the Fourier series with these terms in it.

(b) (10 pts.) Sketch the graph of the function represented by the Fourier sine series in 5 (a) on $-\pi < x < 3\pi$.

Name		

6 (25 pts.)

PDE
$$u_t = 3u_{xx}$$

BCs $u(0,t) = 0$ $u_x(2,t) = 0$
IC $u(x,0) = 2\sin(\frac{3\pi}{4}x) - 7\sin(\frac{5\pi}{4}x)$

You must derive the solution. Your solution should not have any arbitrary constants in it. Show **all** steps.

Name		
ranic		

7. (a) (10 pts.) Solve

$$y'' - 4y' + 13y = 0;$$
 $y(0) = 0,$ $y(\pi) = 0$

(b) (15 pts.) Find the first 6 nonzero terms of the power series solution about x = 0 for the DE:

$$y'' + 2x^2y' + 2xy = 0$$

Be sure to give the recurrence relation.

8 (a) (12 pts.) Solve

$$x\frac{dy}{dx} = 3y + x^2y^{-3}$$

(b) (13 pts.) Find

$$\mathcal{L}^{-1}\left\{\frac{s^2+s+6}{s(s-1)(s-3)}\right\}$$

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$n \ge 1$	<i>s</i> > 0
e ^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		<i>s</i> > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		

Table of Integrals

$\int \sin^2 x dx = -\frac{1}{2}\cos x \sin x + \frac{1}{2}x + C$
$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$
$\int x \cos bx dx = \frac{1}{b^2} (\cos bx + bx \sin bx) + C$
$\int x \sin bx = \frac{1}{b^2} (\sin bx - bx \cos bx) + C$
$\int \left(\frac{e^{-t}}{1+e^t}\right) dt = -e^{-t} - \ln(e^t) + \ln(1+e^t) + C$
$\int xe^{ax}dx = \frac{1}{a^2}(axe^{ax} - e^{ax}) + C$