Name	Lecturer
Tiume	Eccturer

Name	Eecturer	
Ma 221	Final Exam Solutions	5/7/09
Print Name:		
Lecture Section: I pledge my honor that I have abided by the	e Stevens Honor System.	
This exam consists of 8 problems. Y problem is indicated. The total num	You are to solve all of these problems. The point ber of points is 200.	value of each
If you need more work space, continuon. Be sure that you do all problems	nue the problem you are doing on the other side s.	of the page it is
	bhone, or computer while taking this exam. All we be given for work not reasonably supported. Wh	
There are tables giving Laplace to	ransforms and integrals at the end of the exam	n.
Score on Problem #1		
#2		
#3		
#4		
#5		
#6		
#7		

#8 _____

Total Score

1. Solve

(a) (8 pts)

$$x\cos x dx + (1 - 6y^5)dy = 0$$
 $y(\pi) = 0$

Solution: This equation is separable. Hence

$$\int x \cos x dx + \int (1 - 6y^5) dy = c$$

From the table below $\int x \cos x dx = \cos x + x \sin x + k$ so

$$\cos x + x \sin x + y - y^6 = C$$

The initial condition $y(\pi) = 0$ implies

$$-1 = C$$

so the solution is

$$\cos x + x \sin x + 1 = y^6 - y$$

(b) (7 pts) Solve

$$y' = \frac{2 + ye^{xy}}{2y - xe^{xy}}$$

Solution: The equation may be rewritten as

$$(2 + ye^{xy})dx + (xe^{xy} - 2y)dy = 0$$

Let $M = 2 + ye^{xy}$ and $N = xe^{xy} - 2y$. Then

$$M_{V} = e^{xy} + xye^{xy} = N_{X}$$

and this equation is exact. There exists a function f(x, y) such that

$$f_X = M = 2 + ye^{xy}$$
 and $f_Y = N = xe^{xy} - 2y$

 \Rightarrow

$$f = 2x + e^{xy} + g(y)$$

Then

$$f_y = xe^{xy} + g'(y) = N = xe^{xy} - 2y$$

Thus $g(y) = -y^2 + c$. The solution is given by

$$f = 2x + e^{xy} - y^2 = k$$

1 (c) (10 pts) Find a general solution of

$$y'' - y' - 2y = 64e^{-t} + 4t^2$$

Solution: The characteristic polynomial is

$$p(r) = r^2 - r - 2 = (r - 2)(r + 1)$$

Therefore the roots are r = 2, -1 and

$$y_h = c_1 e^{-t} + c_2 e^{2t}$$

We first find a particular solution for $64e^{-t}$. Since p(-1) = 0 and p'(r) = 2r - 1 so $p'(-1) = -3 \neq 0$, then

$$y_{p_1} = \frac{64te^{-t}}{-3}$$

To find a particular solution for $4t^2$ we let

$$y_{p_2} = At^2 + Bt + C$$

$$y'_{p_2} = 2At + B$$

$$y''_{p_2} = 2A$$

Substituting into the DE we have

$$2A - 2At - B - 2At^2 - 2Bt - 2C = 4t^2$$

Thus

$$A = -2$$
 $-A - B = 0$ $2A - B - 2C = 0$

Hence B = 2 and C = -3 so

$$y_{p_2} = -2t^2 + 2t - 3$$

Finally

$$y_g = y_h + y_{p_1} + y_{p_2} = c_1 e^{-t} + c_2 e^{2t} - \frac{64te^{-t}}{3} - 2t^2 + 2t - 3$$

$$y'' - y' - 2y = 64e^{-t} + 4t^2$$
, Exact solution is:

$$\left\{ C_8 e^{-t} - \frac{1}{9e^t} \left(192t + 27e^t + 18t^2 e^t - 18te^t + 64 \right) + C_9 e^{2t} \right\}$$

2. (a) (12 pts) Find a general solution of

$$y'' - 2y' + y = 4\sin x$$

Solution: The characteristic polynomial is

$$p(r) = r^2 - 2r + 1 = (r - 1)^2$$

Thus r = 1 is a repeated root and

$$y_h = c_1 e^x + c_2 x e^x$$

We present two approaches find a particular solution.

Complex Variable Approach: Consider a companion equation

$$v'' - 2v' + v = 4\cos x$$

Let w = v + iy, multiply the original equation by i and add it to the equation for v to get

$$w'' - 2w' + w = 4(\cos x + i\sin x) = 4e^{ix}$$

Since $p(i) = -1 - 2i + 1 = -2i \neq 0$, then

$$w_p = \frac{4e^{ix}}{-2i} = 2i(\cos x + i\sin x)$$

 $y_p = \text{Im} w_p = 2\cos x$. Thus

$$y_g = y_h + y_p = c_1 e^x + c_2 x e^x + 2\cos x$$

Without complex variables: Let

$$y_p = A \sin x + B \cos x$$

Then

$$y'_p = A\cos x - B\sin x$$

$$y''_p = -A\sin x - B\cos x$$

The DE implies

$$-A\sin x - B\cos x - 2A\cos x + 2B\sin x + A\sin x + B\cos x = 4\sin x$$

Therefore

$$A = 0$$
 and $B = 2$

so that

$$y_p = A \sin x + B \cos x$$

as before.

$$y'' - 2y' + y = 4\sin x$$
, Exact solution is: $\{2\cos x + C_5 e^x + C_6 x e^x\}$

2(b) (13 pts.) Find a general solution of

$$x^2y'' - xy' = x^3e^x$$
, $x > 0$

Solution: This is an Euler equation with p = -1 and q = 0. The indicial equation is

$$m^2 + (p-1)m + q = m^2 - 2m = 0$$

so m = 0, 2. The two linearly independent solutions are $x^0 = 1$ and x^2 . Thus

$$y_h = c_1 x^0 + c_2 x^2 = c_1 + c_2 x^2$$

Let

$$y_p = v_1 + v_2 x^2$$

Then

$$v'_{1}y_{1} + v'_{2}y_{2} = v'_{1} + v'_{2}x^{2} = 0$$

$$v'_{1}y'_{1} + v'_{2}y'_{2} = 2v'_{2}x = \frac{f}{a} = \frac{x^{3}e^{x}}{x^{2}} = xe^{x}$$

$$W[1, x^{2}] = \begin{vmatrix} 1 & x^{2} \\ 0 & 2x \end{vmatrix} = 2x$$

Therefore

$$v_1' = \frac{\begin{vmatrix} 0 & x^2 \\ xe^x & 2x \end{vmatrix}}{2x} = -\frac{1}{2}x^2e^x$$

SO

$$v_{1} = -\frac{1}{2} \int x^{2} e^{x} dx = -\frac{1}{2} e^{x} (x^{2} - 2x + 2)$$

$$v'_{2} = \frac{\begin{vmatrix} 1 & 0 \\ 0 & xe^{x} \end{vmatrix}}{2x} = \frac{1}{2} e^{x}$$

SO

$$v_2 = \frac{1}{2}e^x$$

and

$$y_p = v_1 + v_2 x^2 = -\frac{1}{2} e^x (x^2 - 2x + 2) + \frac{1}{2} x^2 e^x = x e^x - e^x$$

$$y_g = y_h + y_p = c_1 + c_2 x^2 + x e^x - e^x$$

 $x^{2}y'' - xy' = x^{3}e^{x}$, Exact solution is: $\{C_{9}x^{2} - e^{x} - \frac{1}{2}C_{8} + xe^{x}\}$

3. (a) (10 pts.) Let

$$g(t) = \begin{cases} e^t & \text{for } 0 \le t \le 2 \\ \\ 3 & \text{for } 2 < t < \infty \end{cases}$$

Use the definition of the Laplace transform to find $\mathcal{L}\{g(t)\}$.

Solution: Fro s > 0

$$\mathcal{L}\{g(t)\} = \int_0^\infty e^{-st}g(t)dt = \int_0^2 e^{-st}e^t dt + \int_2^\infty 3e^{-st}dt$$

$$= \int_0^2 e^{(1-s)t} dt + 3\lim_{R \to \infty} \int_2^R e^{-st} dt$$

$$= \frac{e^{(1-s)t}}{1-s} \Big|_0^2 - \frac{3}{s} \lim_{R \to \infty} e^{-st} \Big|_2^R$$

$$= \frac{e^{2(1-s)}}{1-s} - \frac{1}{1-s} - \frac{3}{s} \lim_{R \to \infty} \left[e^{-sR} - e^{2s} \right]$$

$$= \frac{e^{2(1-s)}}{1-s} - \frac{1}{1-s} + \frac{3}{s} e^{-2s}$$

(b) (15 pts.) Solve using Laplace Transforms:

$$y'' - 3y' + 4y = 0$$
 $y(0) = 1$, $y'(0) = 5$

Solution: Taking the Laplace transform of both sides of the DE yields

$$\mathcal{L}\left\{y''\right\} - 3\mathcal{L}\left\{y'\right\} + 4\mathcal{L}\left\{y\right\} = \mathcal{L}\left\{0\right\} = 0$$

so that

$$s^{2}Y(s) - s(1) - 5 - 3[sY(s) - 1] + 4Y(s) = 0$$

Solving for Y(s), we get

$$Y(s) = \frac{s+2}{s^2 - 3s + 4}$$

$$\frac{s+2}{s^2 - 3s + 4} = \frac{s+2}{\left(s - \frac{3}{2}\right)^2 + \frac{7}{4}} = \frac{s - \frac{3}{2}}{\left(s - \frac{3}{2}\right)^2 + \left(\frac{\sqrt{7}}{2}\right)^2} + \frac{\frac{7}{2}}{\left(s - \frac{3}{2}\right)^2 + \left(\frac{\sqrt{7}}{2}\right)^2}$$

$$= \frac{s - \frac{3}{2}}{\left(s - \frac{3}{2}\right)^2 + \left(\frac{\sqrt{7}}{2}\right)^2} + \sqrt{7} \frac{\frac{\sqrt{7}}{2}}{\left(s - \frac{3}{2}\right)^2 + \left(\frac{\sqrt{7}}{2}\right)^2}$$

Hence

$$y(t) = \mathcal{L}^{-1} \left\{ \frac{s+2}{s^2 - 3s + 4} \right\} = \mathcal{L}^{-1} \left\{ \frac{s - \frac{3}{2}}{\left(s - \frac{3}{2}\right)^2 + \left(\frac{\sqrt{7}}{2}\right)^2} \right\} + \sqrt{7} \mathcal{L}^{-1} \left\{ \frac{\frac{\sqrt{7}}{2}}{\left(s - \frac{3}{2}\right)^2 + \left(\frac{\sqrt{7}}{2}\right)^2} \right\}$$
$$= e^{\frac{3}{2}t} \cos \frac{\sqrt{7}}{2} t + \sqrt{7} e^{\frac{3}{2}t} \sin \frac{\sqrt{7}}{2} t$$

4.) a.) (10 pts.) Use separation of variables, u(x,t) = X(x)T(t), to find two ordinary differential equations which X(x) and T(t) must satisfy to be a solution of

$$5x^2t^7\frac{\partial^3 u}{\partial x^2\partial t} + (x+2)^3(t^2+10)^5\frac{\partial^2 u}{\partial t^2} = 0.$$

Note: Do not solve these ordinary differential equations.

Solution:

$$u_{xxt} = X^{\prime\prime}T^{\prime} \quad u_{tt} = XT^{\prime\prime}$$

The DE becomes

$$5x^2t^7X''T' = -(x+2)^3(t^2+10)^5XT''$$

$$\frac{5x^2X''}{(x+2)^3X} = -\frac{(t^2+10)^5T''}{t^7T'} = k, \text{ where } k \text{ is a constant.}$$

Thus

$$5x^2X'' - k(x+2)^3X = 0$$
$$(t^2 + 10)^5T'' + kt^7T' = 0$$

b.) (15 pts.) Find the eigenvalues and eigenfunctions for

$$y'' - 4\lambda y' + 4\lambda^2 y = 0$$
 $y'(1) = 0$, $y(2) + 2y'(2) = 0$

Solution: The characteristic polynomial is

$$p(r) = r^2 - 4\lambda r + 4\lambda^2 = (r - 2\lambda)^2$$

Thus $r = 2\lambda$ is a repeated root and

$$y = c_1 e^{2\lambda x} + c_2 x e^{2\lambda x}$$

Hence

$$y' = 2c_1\lambda e^{2\lambda x} + 2c_2\lambda x e^{2\lambda x} + c_2 e^{2\lambda x}$$
$$y'(1) = 0 \implies 2\lambda c_1 + (1+2\lambda)c_2 = 0$$
$$y(2) + 2y'(2) = 0 \implies c_1 + 2c_2 + 2(2c_1\lambda + 4c_2\lambda + c_2) = 0$$

or

$$(1+4\lambda)c_1 + (4+8\lambda)c_2 = 0$$

So we have the following two equations

$$2\lambda c_1 + (1+2\lambda)c_2 = 0$$
$$(1+4\lambda)c_1 + (4+8\lambda)c_2 = 0$$

These two equations will have a nontrivial solution if and only if

$$\begin{vmatrix} 2\lambda & 1+2\lambda \\ 1+4\lambda & 4+8\lambda \end{vmatrix} = 8\lambda + 16\lambda^2 - \left(1+6\lambda + 8\lambda^2\right)$$
$$= 8\lambda^2 + 2\lambda - 1 = (4\lambda - 1)(2\lambda + 1)$$

Thus, for a nontrivial solution we want $\lambda = \frac{1}{4}$ or $-\frac{1}{2}$. These are the eigenvalues. When $\lambda = -\frac{1}{2}$ the equations for c_1 and c_2 become

$$-c_1 + 0c_2 = 0$$

$$-2c_1 + 0c_2 = 0$$

Thus $c_1 = 0$ and c_2 can be any constant. Hence we have the corresponding eigenfunction

$$y = c_2 x e^{-x}$$

For $\lambda = \frac{1}{4}$ the equations for c_1 and c_2 become

$$\frac{1}{2}c_1 + \frac{3}{2}c_2 = 0$$

$$2c_1 + 6c_2 = 0$$

Thus $c_1 = -3c_2$ and the corresponding eigenfunction is

$$y = c_2(-3 + x)e^{\frac{1}{2}x}$$

5. (a) (15 pts.) Find the first four nonzero terms of the Fourier sine series for the function

$$f(x) = \begin{cases} x & ; & 0 < x < \pi/2 \\ 0 & ; & \pi/2 < x < \pi \end{cases}$$

Be sure to give the Fourier series with these terms in it.

Solution: The Fourier sine series for f(x) can be represented by

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin(nx)$$

where

$$b_n = \frac{2}{\pi} \left[\int_0^{\pi/2} x \sin(nx) dx \right]$$

We integrate by parts with u = x, $dv = \sin(nx)dx$ and $v = -\frac{1}{n}\cos(nx)$ to obtain

$$b_n = \frac{2}{\pi} \left[-\frac{1}{n} x \cos(nx) + \int_0^{\pi/2} \frac{1}{n} \cos(nx) dx \right]$$

$$\Rightarrow b_n = \frac{2}{\pi} \left[-\frac{1}{n} x \cos(nx) \right]_0^{\pi/2} + \frac{1}{n^2} \sin(nx) \right]_0^{\pi/2}$$

$$\Rightarrow b_n = \frac{2}{\pi} \left[-\frac{\pi}{2n} \cos(\frac{n\pi}{2}) + \frac{1}{n^2} \sin(\frac{n\pi}{2}) \right]$$

If
$$n = 1$$
, $b_1 = \frac{2}{\pi} [1] = \frac{2}{\pi}$

If
$$n = 2$$
, $b_2 = \frac{2}{\pi} \left[\frac{\pi}{4} \right] = \frac{1}{2}$

If
$$n = 1$$
, $b_1 = \frac{2}{\pi}[1] = \frac{2}{\pi}$
If $n = 2$, $b_2 = \frac{2}{\pi}[\frac{\pi}{4}] = \frac{1}{2}$
If $n = 3$, $b_3 = \frac{2}{\pi}[-\frac{1}{9}] = -\frac{2}{9\pi}$
If $n = 4$, $b_4 = \frac{2}{\pi}[-\frac{\pi}{8}] = -\frac{1}{4}$

If
$$n = 4$$
, $b_4 = \frac{2}{\pi} \left[-\frac{\pi}{8} \right] = -\frac{1}{4}$

By substituting into the series we obtain:

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin(nx) = \frac{2}{\pi} \sin x + \frac{1}{2} \sin(2x) - \frac{2}{9\pi} \sin(3x) - \frac{1}{4} \sin(4x) + \dots$$

(b) (10 pts.) Sketch the graph of the function represented by the Fourier sine series in 5 (a) on $-\pi < x < 3\pi$.

$$f(x) = \begin{cases} x & ; & 0 < x < \pi/2 \\ 0 & ; & \pi/2 < x < \pi \end{cases}$$

$$\frac{\pi}{2} = 1.5708$$

$$\pi = 3.1416$$

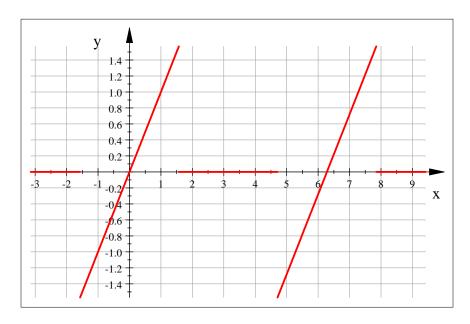
$$\frac{3\pi}{2} = 4.7124$$

$$2\pi = 6.2832$$

$$\frac{5\pi}{2} = 7.8540$$

 $3\pi = 9.4248$

 \boldsymbol{x}



6 (25 pts.)

PDE
$$u_t = 3u_{xx}$$

BCs $u(0,t) = 0$ $u_x(2,t) = 0$
IC $u(x,0) = 2\sin(\frac{3\pi}{4}x) - 7\sin(\frac{5\pi}{4}x)$

You must derive the solution. Your solution should not have any arbitrary constants in it. Show all steps.

Solution:

Assume

$$u(x,t) = X(x)T(t)$$

Then, $u_t = XT'$ and $u_{xx} = X''T$. By substituting into the PDE we obtain:

$$XT' = 3X''T$$

By separating the variables,

$$\frac{T'}{3T} = \frac{X''}{X} = \lambda$$

We obtain two ODEs:

$$X^{\prime\prime\prime} - \lambda X = 0$$

$$T' - 3\lambda T = 0$$

From the B.C.:

$$u(0,t) = X(0)T(t) = 0 \Rightarrow X(0) = 0$$

$$u_X(2,t) = X'(2)T(t) = 0 \Rightarrow X'(2) = 0$$

We now solve the eigenvalue problem:

$$X'' - \lambda X = 0; \quad X(0) = 0, \quad X'(2) = 0$$

The auxiliary equation $r^2 - \lambda = 0$ implies that

$$r = \pm \sqrt{\lambda}$$

There are three cases: $\lambda = 0$, $\lambda > 0$, $\lambda < 0$

Case 1: $\lambda = 0$

$$\Rightarrow r = 0$$
 is a double root.

$$\Rightarrow X(x) = c_1 + c_2 x$$

$$0 = X(0) = c_1$$

$$X' = c_2$$

$$0 = X'(2) = c_2$$

$$\Rightarrow X \equiv 0$$
 (trivial)

Case 2: $\lambda > 0$, let $\lambda = k^2$ where $k \neq 0$

$$\Rightarrow r = \pm k$$

$$\Rightarrow X(x) = c_1 e^{kx} + c_2 e^{-kx}$$

$$0 = X(0) = c_1 + c_2 \Rightarrow c_2 = -c_1$$

$$X' = kc_1 e^{kx} - kc_2 e^{-kx}$$

$$0 = X'(2) = kc_1 e^{2k} + kc_1 e^{-2k}$$

$$\Rightarrow 0 = kc_1 \left[e^{2k} + e^{-2k} \right]$$

$$\Rightarrow c_1 = c_2 = 0 \quad \text{(trivial)}$$
Case 3: $\lambda < 0$, let $\lambda = -k^2$ where $k \neq 0$

$$\Rightarrow r = \pm ki$$

$$\Rightarrow X(x) = c_1 \cos kx + c_2 \sin kx$$

$$0 = X(0) = c_1$$

$$X' = -kc_1 \sin kx + kc_2 \cos kx$$

$$0 = X'(2) = kc_2 \cos 2k$$

$$\cos 2k = 0 \Rightarrow 2k = \frac{(2n+1)\pi}{2} \Rightarrow k = \frac{(2n+1)\pi}{4} \quad n = 0, 1, 2, \dots$$

We obtain

$$X_n = c_n \sin\left(\frac{(2n+1)\pi}{4}x\right)$$

With $\lambda_n = -\frac{(2n+1)^2 \pi^2}{16}$, the second ODE becomes

$$T' + \frac{3(2n+1)^2\pi^2}{16}T = 0$$

This is a first-order separable equation. By separating the variables we obtain

$$\frac{dT}{T} = -\frac{3(2n+1)^2\pi^2}{16}dt$$

By integrating,

$$\ln T = -\frac{3(2n+1)^2 \pi^2}{16} t$$

or

$$T_n = e^{-\frac{3(2n+1)^2\pi^2}{16}t}$$

The general solution is:

$$u(x,t) = \sum_{n=0}^{\infty} c_n \sin\left(\frac{(2n+1)\pi}{4}x\right) e^{-\frac{3(2n+1)^2\pi^2}{16}t}$$

From the initial condition:

$$u(x,0) = \sum_{n=0}^{\infty} c_n \sin\left(\frac{(2n+1)\pi}{4}x\right) = 2\sin(\frac{3\pi}{4}x) - 7\sin(\frac{5\pi}{4}x)$$

If $2n+1=3 \Rightarrow n=1 \Rightarrow c_1=2$

If
$$2n + 1 = 5 \Rightarrow n = 2 \Rightarrow c_2 = -7$$

The other c_n 's are 0.

Substituting into the general solution yields:

$$u(x,t) = 2\sin(\frac{3\pi}{4}x)e^{-\frac{27\pi^2}{16}t} - 7\sin(\frac{5\pi}{4}x)e^{-\frac{75\pi^2}{16}t}$$

7. (a) (10 pts.) Solve

$$y'' - 4y' + 13y = 0;$$
 $y(0) = 0,$ $y(\pi) = 0$

Solution:

The auxiliary equation is:

$$p(r) = r^2 - 4r + 13 = 0$$

This implies that

$$r = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i$$

The general solution is:

$$y = c_1 e^{2x} \cos 3x + c_2 e^{2x} \sin 3x$$

By substituting the boundary conditions:

$$0 = y(0) = c_1$$

$$0 = y(\pi) = -c_1 e^{2\pi} \Rightarrow c_1 = 0$$

This implies that c_2 is an arbitrary constant. The solution satisfying the boundary conditions is:

$$y = Ce^{2x} \sin 3x$$
; C arbitrary

(b) (15 pts.) Find the first 6 nonzero terms of the power series solution about x = 0 for the DE:

$$y'' + 2x^2y' + 2xy = 0$$

Be sure to give the recurrence relation.

Solution:

Let

$$y = \sum_{n=0}^{\infty} a_n x^n$$

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

$$y'' = \sum_{n=1}^{\infty} n(n-1) a_n x^{n-2}$$

By substituting into the DE:

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=1}^{\infty} 2na_n x^{n+1} + \sum_{n=0}^{\infty} 2a_n x^{n+1} = 0$$

Let n = k + 3 in the first sum and n = k in the second and third sums to obtain

$$\sum_{k=-1}^{\infty} (k+3)(k+2)a_{k+3}x^{k+1} + \sum_{k=1}^{\infty} 2ka_kx^{k+1} + \sum_{k=0}^{\infty} 2a_kx^{k+1} = 0$$

or

$$2a_2 + 6a_3x + \sum_{k=1}^{\infty} (k+3)(k+2)a_{k+3}x^{k+1} + \sum_{k=1}^{\infty} 2ka_kx^{k+1} + 2a_0x + \sum_{k=1}^{\infty} 2a_kx^{k+1} = 0$$

By equating coefficients:

$$2a_2 = 0 \Rightarrow a_2 = 0$$

 $6a_3 + 2a_0 = 0 \Rightarrow a_3 = -\frac{1}{3}a_0$

The recurrence relation is:

$$(k+3)(k+2)a_{k+3} + 2ka_k + 2a_k = 0$$

or

$$a_{k+3} = -\frac{2(k+1)}{(k+3)(k+2)}a_k;$$
 $k = 1, 2, 3, ...$

From the recurrence relation:

$$a_4 = -\frac{2(2)}{(4)(3)}a_1 = -\frac{1}{3}a_1$$

$$a_5 = -\frac{2(3)}{(5)(4)}a_2 = 0$$

$$a_6 = -\frac{2(4)}{(6)(5)}a_3 = -\frac{4}{15}a_3 = \frac{4}{45}a_0$$

$$a_7 = -\frac{2(5)}{(7)(6)}a_4 = -\frac{5}{21}a_4 = \frac{5}{63}a_1$$

By substituting into the power series we obtain:

$$y = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x - \frac{1}{3} a_0 x^3 - \frac{1}{3} a_1 x^4 + \frac{4}{45} a_0 x^6 + \frac{5}{63} a_1 x^7 + \dots$$

8 (a) (12 pts.) Solve

$$x\frac{dy}{dx} = 3y + x^2y^{-3}$$

Solution:

This is a Bernoulli equation. We first rewrite it in standard form:

$$\frac{dy}{dx} - \frac{3}{x}y = xy^{-3}$$

Multiply both sides by y^3

$$y^3 \frac{dy}{dx} - \frac{3}{x} y^4 = x$$

Let
$$z = y^4$$

$$\Rightarrow \frac{dz}{dx} = 4y^3 \frac{dy}{dx}$$

By substituting into the DE,

$$\frac{1}{4}\frac{dz}{dx} - \frac{3}{x}z = x$$

or

$$\frac{dz}{dx} - \frac{12}{x}z = 4x$$

This is a first-order linear equation. The integrating factor is:

$$\mu(x) = e^{\int -\frac{12}{x} dx} = e^{-12\ln x} = e^{\ln(x^{-12})} = x^{-12}$$

By multiplying both sides by $\mu(x)$, we obtain:

$$x^{-12} \frac{dz}{dx} - 12x^{-13}z = 4x^{-11}$$

$$\Rightarrow \frac{d}{dx}(x^{-12}z) = 4x^{-11}$$

$$\Rightarrow x^{-12}z = -\frac{2}{5}x^{-10} + C$$

$$\Rightarrow z = -\frac{2}{5}x^2 + Cx^{12}$$

$$\Rightarrow y^4 = -\frac{2}{5}x^2 + Cx^{12}$$

(b) (13 pts.) Find

$$\mathcal{L}^{-1}\left\{\frac{s^2+s+6}{s(s-1)(s-3)}\right\}$$

Solution:

$$\hat{f}(s) = \frac{s^2 + s + 6}{s(s-1)(s-3)} = \frac{A}{s} + \frac{B}{s-1} + \frac{C}{s-3}$$

By multiplying both sides by s(s-1)(s-3), we obtain:

$$s^2 + s + 6 = A(s-1)(s-3) + Bs(s-3) + Cs(s-1)$$

If s = 0,

$$6 = 3A \Rightarrow A = 2$$

If s = 1,

$$8 = -2B \Rightarrow B = -4$$

If s = 3,

$$18 = 6C \Rightarrow C = 3$$

This implies that

$$\widehat{f}(s) = \frac{2}{s} - \frac{4}{s-1} + \frac{3}{s-3}$$

or

$$\mathcal{L}^{-1}\left\{\frac{s^2+s+6}{s(s-1)(s-3)}\right\} = 2\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} - 4\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} + 3\mathcal{L}^{-1}\left\{\frac{1}{s-3}\right\} = 2 - 4e^t + 3e^{3t}$$

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$n \ge 1$	<i>s</i> > 0
e ^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		<i>s</i> > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		

Table of Integrals

$\int \sin^2 x dx = -\frac{1}{2}\cos x \sin x + \frac{1}{2}x + C$
$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$
$\int x \cos bx dx = \frac{1}{b^2} (\cos bx + bx \sin bx) + C$
$\int x \sin bx = \frac{1}{b^2} (\sin bx - bx \cos bx) + C$
$\int \left(\frac{e^{-t}}{1+e^t}\right) dt = -e^{-t} - \ln(e^t) + \ln(1+e^t) + C$
$\int xe^{ax}dx = \frac{1}{a^2}(axe^{ax} - e^{ax}) + C$
$\int x^2 e^{ax} dx = \frac{1}{a^3} e^{ax} \left(a^2 x^2 - 2ax + 2 \right) + C$
$\int u dv = uv - \int v du$