Ma 221

Final Exam Solutions

5/14/13

1. Solve

(a) (8 pts)

$$\frac{dy}{dx} = \frac{e^{x+y}}{y-1} \qquad y(0) = 0$$

Solution: The equation is separable.

$$(y-1)e^{-y}dy = e^x dx$$

$$\int (y-1)e^{-y}dy = \int e^x dx$$

$$\int (ye^{-y} - e^{-y})dy = \int e^x dx$$

$$-ye^{-y} - e^{-y} + e^{-y} = e^x + c$$

The last step comes from the integral table. We use the initial condition y(0) = 0 to find the constant. c = -1.

So the solution is given implicitly by

$$-ye^{-y}=e^x-1$$

or

$$e^x + ye^{-y} = 1$$

(b) (7 pts) Solve

$$y\frac{dx}{dy} + 2x = 5y^3$$

Solution: The d.e. is linear. We write it in the standard form.

$$\frac{dx}{dy} + \frac{2}{y}x = 5y^2$$

So the integrating factor is

$$e^{\int \frac{2}{y} dy} = e^{2 \ln y} = e^{\ln y^2} = y^2.$$

Multiplication by this factor and integrating gives the solution.

$$y^{2} \frac{dx}{dy} + 2yx = 5y^{4}$$
$$\frac{d}{dy} (y^{2}x) = 5y^{4}$$
$$y^{2}x = y^{5} + c$$
$$x = y^{3} + cy^{-2}.$$

1 (c) (10 pts) Solve

$$\frac{dy}{dx} = \frac{x}{y} + \frac{y}{x}, \qquad y(1) = 4$$

Solution: This is a Bernoulli d.e. We begin by putting the equation into the standard form.

$$\frac{dy}{dx} - \frac{y}{x} = xy^{-1}$$

A little algebra will lead to the substitution $v = y^2$ which will give a linear d.e.

$$y\frac{dy}{dx} - \frac{1}{x}y^2 = x$$
$$\frac{1}{2}\frac{dv}{dx} - \frac{1}{x}v = x$$
$$\frac{dv}{dx} - \frac{2}{x}v = 2x$$

The integrating factor is

$$e^{\int \frac{-2}{x} dx} = e^{-2\ln x} = e^{\ln(x^{-2})} = x^{-2}.$$

We multiply by this factor and integrate.

$$\frac{1}{x^2} \frac{dv}{dx} - \frac{2}{x^3} v = \frac{2}{x}$$

$$\frac{d}{dx} \left(\frac{1}{x^2} v \right) = \frac{2}{x}$$

$$\frac{1}{x^2} v = 2\ln x + c$$

$$v = 2x^2 \ln x + cx^2$$

$$y^2 = 2x^2 \ln x + cx^2$$

Finally, we use the initial condition to obtain the constant.

$$4^2 = 2\ln 1 + c$$

$$c = 16$$

Thus the solution is given implicitly by

$$y^2 = 2x^2 \ln x + 16x^2$$

2. (a) (12 pts) Find a general solution of

$$y'' + 4y' + 5y = 10 + 8\sin t$$

Solution: First, we solve the corresponding homogeneous equation by finding the roots of the characteristic polynomial.

$$r^{2} + 4r + 5 = 0$$

$$r^{2} + 4r + 4 + 1 = 0$$

$$r^{2} + 4r + 4 = -1$$

$$(r+2)^{2} = -1$$

$$r + 2 = \pm i$$

$$r = -2 \pm i$$

$$y_{h} = c_{1}e^{-2t}\cos t + c_{2}e^{-2t}\sin t$$

Next, we solve

$$y'' + 4y' + 5y = 10$$

The solution has the form

$$y = A$$

Substitution gives

$$5A = 10$$
$$A = 2$$
$$y_{p_1} = 2$$

To solve

$$y'' + 4y' + 5y = 8\sin t$$

we seek a solution of the form

$$y = A\cos t + B\sin t$$

$$y' = -A\sin t + B\cos t$$

$$y'' = -A\cos t - B\sin t$$

Substitution gives

$$-A\cos t - B\sin t + 4(-A\sin t + B\cos t) + 5(A\cos t + B\sin t) = 8\sin t$$

Equating the coefficients of $\cos t$ and $\sin t$, we obtain two equations.

$$-A + 4B + 5A = 0$$

 $-B - 4A + 5B = 8$

I.e.

$$4A + 4B = 0$$

$$-4A + 4B = 8$$

$$B = 1$$

$$A = -1$$

$$y_{p_2} = -\cos t + \sin t$$

Finally, we put it all together.

A

$$y = y_h + y_{p_1} + y_{p_2}$$

= $c_1 e^{-2t} \cos t + c_2 e^{-2t} \sin t + 2 - \cos t + \sin t$

SNB check $y'' + 4y' + 5y = 10 + 8\sin t$, Exact solution is: $\left\{\sin t - \cos t + C_2(\cos t)e^{-2t} - C_3(\sin t)e^{-2t} + 2\right\}$

2(b) (13 pts.) Find a general solution of

$$y'' + 16y = \tan 4t$$

Solution: The characteristic equation is

$$r^{2} + 16 = 0$$

$$r^{2} = -16$$

$$r = \pm 4i$$

Hence, the solution of the homogeneous equation is

$$y_h = c_1 y_1 + c_2 y_2$$

= $c_1 \cos 4t + c_2 \sin 4t$.

To find a particular solution of the given equation, we use variation of parameters. The form of the solution is

$$y_h = v_1 y_1 + v_2 y_2$$
$$= v_1 \cos 4t + v_2 \sin 4t$$

The derivatives of the unknowns satisfy

$$y_1v_1' + y_2v_2' = 0$$

$$y_1'v_1' + y_2'v_2' = \tan 4t$$

Substituting the solutions from the homogeneous equation, we obtain

$$(\cos 4t)v_1' + (\sin 4t)v_2' = 0$$

(-4\sin 4t)v_1' + (4\cos 4t)v_2' = \tan 4t

Multiplying the first equation by $4\sin 4t$ and the second equation by $\cos 4t$ gives

$$(4\sin 4t)(\cos 4t)v_1' + 4(\sin^2 4t)v_2' = 0$$

$$(\cos 4t)(-4\sin 4t)v_1' + (4\cos^2 4t)v_2' = \sin 4t$$

Add these to obtain

$$4(\sin^{2}4t + \cos^{2}4t)v'_{2} = \sin 4t$$

$$v'_{2} = \frac{1}{4}\sin 4t$$

$$v_{2} = -\frac{1}{16}\cos 4t + c_{2}$$

Substituting the value of v_2' into equation A gives

Name		
ranic		

Lecturer _____

$$(\cos 4t)v'_1 + (\sin 4t)\left(\frac{1}{4}\sin 4t\right) = 0$$

$$v'_1 = \frac{1}{4}\frac{\sin^2 4t}{\cos 4t}$$

$$= \frac{1}{4}\frac{1 - \cos^2 4t}{\cos 4t}$$

$$= \frac{1}{4}(\sec 4t - \cos 4t)$$

$$v_1 = \frac{1}{4}\int(\sec 4t - \cos 4t)dt$$

$$= \frac{1}{16}(\ln|\sec 4t + \tan 4t| - \sin 4t) + c_1$$

Finally, we combine everything to display the solution.

$$y = v_1 \cos 4t + v_2 \sin 4t$$

= $\left[\frac{1}{16} (\ln|\sec 4t + \tan 4t| - \sin 4t) + c_1 \right] \cos 4t + \left(-\frac{1}{16} \cos 4t + c_2 \right) \sin 4t$

3. (a) (10 pts.) Let $F(s) = \mathcal{L}\{f(t)\}$. Given that f(t) is continuous and of exponential order α , use the definition of the Laplace Transform to show that

$$\mathcal{L}\{tf(t)\} = -\frac{dF}{ds}.$$

Solution:

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$$

$$\frac{dF}{ds} = \frac{d}{ds} \int_0^\infty e^{-st} f(t) dt$$

$$= \int_0^\infty \frac{d}{ds} (e^{-st} f(t)) dt$$

$$= \int_0^\infty (-te^{-st} f(t)) dt$$

$$= \int_0^\infty e^{-st} (-tf(t)) dt$$

$$= -\int_0^\infty e^{-st} (tf(t)) dt$$

$$= -\mathcal{L}\{tf(t)\}$$

Multiplication by -1 gives the desired result.

(b) (15 pts.) Solve using Laplace Transforms:

$$y'' - 4y' + 4y = 3te^{2t}$$
 $y(0) = 4$, $y'(0) = 2$

Solution: We take the Laplace Transform, using the following notation and formulae.

$$Y = \mathcal{L}\{y\}$$

$$\mathcal{L}\{y'\} = sY - y(0)$$

$$\mathcal{L}\{y''\} = s^2Y - sy(0) - y'(0)$$

The transform of the d.e. is

$$s^{2}Y - sy(0) - y'(0) - 4[sY - y(0)] + 4Y = \frac{3}{(s-2)^{2}}$$

$$(s^{2} - 4s + 4)Y - 4s - 2 + 16 = \frac{3}{(s-2)^{2}}$$

$$(s^{2} - 4s + 4)Y = 4s - 14 + \frac{3}{(s-2)^{2}}$$

$$Y = \frac{4s - 14}{(s-2)^{2}} + \frac{3}{(s-2)^{4}}$$

$$= \frac{4(s-2) - 6}{(s-2)^{2}} + \frac{3}{(s-2)^{4}}$$

$$= \frac{4}{(s-2)} + \frac{-6}{(s-2)^{2}} + \frac{3}{(s-2)^{4}}$$

Obtaining the inverse Laplace Transforms from the table yields the solution.

$$y = 4e^{2t} - 6te^{2t} + \frac{3}{3!}t^3e^{2t} = 4e^{2t} - 6te^{2t} + \frac{1}{2}t^3e^{2t}$$

SNB Check:

$$y'' - 4y' + 4y = 3te^{2t}$$
$$y(0) = 4$$
$$y'(0) = 2$$

, Exact solution is: $\left\{4e^{2t} - 6te^{2t} + \frac{1}{2}t^3e^{2t}\right\}$

4.) a.) (10 pts.) Use separation of variables, u(x,t) = X(x)T(t), to find two ordinary differential equations which X(x) and T(t) must satisfy to be a solution of

$$e^{2x+3t} \frac{\partial^2 u}{\partial x \partial t} - (x+4)^5 (t^2+7)^8 \frac{\partial^2 u}{\partial x^2} = 0$$

Note: Do **not** solve these ordinary differential equations.

Solution: We substitute the given expression and then try to rewrite the equation with everything involving x on one side of the equation and everything involving t on the other side.

$$u(x,t) = X(x)T(t)$$

$$\frac{\partial^{2} u}{\partial x \partial t} = X'(x)T'(t)$$

$$\frac{\partial^{2} u}{\partial x^{2}} = X''(x)T(t)$$

$$e^{2x+3t}X'(x)T'(t) - (x+4)^{5}(t^{2}+7)^{8}X''(x)T(t) = 0$$

$$e^{2x}e^{3t}X'(x)T'(t) = (x+4)^{5}(t^{2}+7)^{8}X''(x)T(t)$$

$$\frac{e^{3t}}{(t^{2}+7)^{8}} \frac{T'(t)}{T(t)} = (x+4)^{5}e^{-2x}\frac{X''(x)}{X'(x)}$$

Since we have a function only of t equal to a function only of x, the result must be a constant. Any name is acceptable, so I choose K and write the two resulting differential equations..

$$\frac{e^{3t}}{(t^2+7)^8} \frac{T'(t)}{T(t)} = (x+4)^5 e^{-2x} \frac{X''(x)}{X'(x)} = K$$
$$e^{3t} T'(t) = K(t^2+7)^8 T(t)$$
$$(x+4)^5 e^{-2x} X''(x) = KX'(x)$$

b.) (15 pts.) Find

$$\mathcal{L}^{-1}\left\{\frac{4s^2+13s+19}{(s-1)(s^2+4s+13)}\right\}$$

Solution: We use partial fractions to break this into the kind of expressions in the table of Laplace Transforms.

$$\frac{4s^2 + 13s + 19}{(s-1)(s^2 + 4s + 13)} = \frac{4s^2 + 13s + 19}{(s-1)(s^2 + 4s + 4 + 9)}$$
$$= \frac{4s^2 + 13s + 19}{(s-1)[(s+2)^2 + 9]}$$
$$= \frac{A}{s-1} + \frac{B(s+2) + C}{(s+2)^2 + 9}$$

Multiplication by the common denominator gives

$$4s^2 + 13s + 19 = A[(s+2)^2 + 9] + [B(s+2) + C](s-1)$$

The choice s = 1 yields

$$4 + 13 + 19 = 36 = A[3^2 + 9]$$

 $A = 2$

Set s = -2 to obtain

$$4 \cdot 4 - 26 + 19 = A \cdot 9 + C \cdot (-3)$$

 $9 = 18 - 3C$
 $C = 3$

Now, s = 0 gives

$$19 = A[4+9] + (2B+C)(-1)$$

$$19 = 26 - 2B - 3$$

$$2B = 4$$

$$B = 2$$

So

$$\frac{4s^2 + 13s + 19}{(s-1)(s^2 + 4s + 13)} = \frac{A}{s-1} + \frac{B(s+2) + C}{(s+2)^2 + 9}$$

$$= \frac{2}{s-1} + \frac{2(s+2)}{(s+2)^2 + 3^2} + \frac{3}{(s+2)^2 + 3^2}$$

$$\mathcal{L}^{-1}\left\{\frac{4s^2 + 13s + 19}{(s-1)(s^2 + 4s + 13)}\right\} = 2\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} + 2\mathcal{L}^{-1}\left\{\frac{(s+2)}{(s+2)^2 + 3^2}\right\} + \mathcal{L}^{-1}\left\{\frac{3}{(s+2)^2 + 3^2}\right\}$$

$$= 2e^t + 2e^{-2t}\cos 3t + e^{-2t}\sin 3t$$

SNB check
$$\frac{4s^2+13s+19}{(s-1)(s^2+4s+4+9)} = \frac{2}{s-1} + \frac{2s+7}{s^2+4s+13}$$

$$\frac{4s^2+13s+19}{(s-1)(s^2+4s+4+9)}$$
, Is Laplace transform of $2e^t + 2e^{-2t} \left(\cos 3t + \frac{1}{2}\sin 3t\right)$

5. (a) (15 pts.) Find the first five non-zero terms of the Fourier cosine series for the function

$$f(x) = x$$
 on $0 < x < \pi$

Solution:

$$f(x) = \frac{a_0}{2} + \sum_{1}^{\infty} \alpha_k \cos \frac{n\pi x}{L}$$

where

$$\alpha_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx, \quad n = 0, 1, 2, 3, \dots$$

Here $L = \pi$ so

$$f(x) = \frac{a_0}{2} + \sum_{1}^{\infty} \alpha_n \cos nx$$

where

$$a_n = \frac{2}{\pi} \int_0^{\pi} x \cos nx dx, \quad n = 0, 1, 2, 3, \dots$$

$$a_0 = \frac{2}{\pi} \int_0^\pi x dx = \pi$$

 $\int x \cos nx dx = \frac{1}{n^2} (\cos nx + nx \sin nx) =$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x \cos nx dx, \quad n = 1, 2, 3, \dots$$

$$= \frac{2}{\pi n^2} (\cos nx + nx \sin nx)|_0^{\pi} \quad n = 1, 2, 3, \dots$$

$$= \frac{2}{\pi n^2} (\cos n\pi - 1) = \frac{2}{\pi n^2} ((-1)^n - 1) \quad n = 1, 2, 3, \dots$$

Thus

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \frac{1}{49} \cos 7x + \cdots \right]$$

(b) (10 pts.) Sketch the graph of the function represented by the Fourier *cosine* series in 5 (a) on $-\pi < x < 3\pi$.

Solution:

6 (25 pts.)

PDE
$$u_{xx} = u_t$$

BCs $u(0,t) = 0$ $u(\pi,t) = 0$
ICs $u(x,0) = -17\sin 5x$

You must derive the solution. Your solution should not have any arbitrary constants in it. Show all steps.

Solution: u(x,t) = X(x)T(t)

$$X''T = XT' \Rightarrow \frac{X''}{X} = \frac{T'}{T} = -\lambda^2$$

Therefore

$$X'' + \lambda^2 X = 0$$
 $X(0) = X(\pi) = 0$

$$X(x) = c_1 \sin \lambda x + c_2 \cos \lambda x$$

$$X(0) = 0 \Rightarrow c_2 = 0, \ X(\pi) = c_1 \sin(\lambda \pi) = 0$$
 so

$$\lambda = n, \quad n = 1, 2, 3, \dots$$

and

$$X_n(x) = c_n \sin(nx)$$

The equation for *T* is

$$T' + \lambda^2 T = T' + n^2 T = 0 \Rightarrow T_n(t) = a_n e^{-n^2 t}$$

$$u_n(x,t) = X_n(x)T_n(t) = A_n e^{-n^2 t} \sin nx, \quad n = 1,2,...$$

SO

$$u(x,t) = \sum_{n=1}^{\infty} e^{-n^2 t} A_n \sin nx$$

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin nx = -17 \sin 5x$$

Therefore $A_5 = -17, A_n = 0, n \neq 5$ so

$$u(x,t) = -17e^{-25t}\sin 5x$$

7. (a) (10 pts.) Find a general solution of

$$y'' - 4y' + 4y = 3e^{2t} + 8$$

Solution: The characteristic equation is

$$p(r) = r^2 - 4r + 4 = (r - 2)^2 = 0$$

Thus r = 2 is a repeated root and the homogeneous solution is

$$y_h = c_1 e^{2t} + c_2 t e^{2t}$$

Since p(2) = p'(2) = 0 a particular solution for $3e^{2t}$ is

$$y_{p_1} = \frac{kt^2e^{\alpha t}}{p''(\alpha)} = \frac{3}{2}t^2e^{2t}$$

By inspection we see that a particular solution for 8 is 2. Thus

$$y = y_h + y_{p_1} + y_{p_2} = c_1 e^{2t} + c_2 t e^{2t} + \frac{3}{2} t^2 e^{2t} + 2$$

SNB Check: $y'' - 4y' + 4y = 3e^{2t} + 8$, Exact solution is: $C_1e^{2t} + C_2te^{2t} + \frac{3}{2}t^2e^{2t} + 2$

(b) (15 pts.) Find the power series solution to

$$y'' - xy' + 2y = 0$$

near x = 0. Be sure to give the recurrence relation. Indicate the two linearly independent solutions and give the first six nonzero terms of the solution.

Solution:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$y'(x) = \sum_{n=1}^{\infty} a_n(n) x^{n-1}$$

$$y''(x) = \sum_{n=2}^{\infty} a_n(n) (n-1) x^{n-2}$$

The DE implies

$$\sum_{n=2}^{\infty} a_n(n)(n-1)x^{n-2} - \sum_{n=1}^{\infty} a_n(n)x^n + 2\sum_{n=0}^{\infty} a_nx^n = 0$$

or

$$2a_0 + \sum_{n=2}^{\infty} a_n(n)(n-1)x^{n-2} + \sum_{n=1}^{\infty} a_n(2-n)x^n = 0$$

We shift the second sum by letting k - 2 = n or k = n + 2 and get

$$2a_0 + \sum_{n=2}^{\infty} a_n(n)(n-1)x^{n-2} + \sum_{k=3}^{\infty} a_{k-2}(2-k+2)x^{k-2} = 0$$

Replacing n and k by m and combining we have

$$2a_0 + +(2)(1)a_2 + \sum_{m=3}^{\infty} \{a_m(m)(m-1) + a_{m-2}(4-m)\}x^{m-2} = 0$$

so

$$2a_0 + (2)(1)a_2 = 0 \Rightarrow a_2 = -a_0$$
$$a_m(m)(m-1) + a_{m-2}(4-m) = 0 \quad m = 3, 4, \dots$$

or

$$a_m = -\left(\frac{4-m}{m(m-1)}\right)a_{m-2} \quad m = 3, 4, \dots$$

Then

$$a_{3} = -\frac{1}{3(2)}a_{1}$$

$$a_{4} = 0$$

$$a_{5} = \frac{1}{5(4)}a_{3} = -\frac{1}{5!}a_{1}$$

$$a_{6} = 0$$

$$a_{7} = \frac{3}{7(6)}a_{5} = -\frac{3}{7!}a_{1}$$

Thus

$$y(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots = a_0 \left[1 - x^2 \right] + a_1 \left[x - \frac{1}{3!} x^3 - \frac{1}{5!} x^5 - \frac{3}{7!} x^7 + \dots \right]$$

SNB Check: y'' - xy' + 2y = 0, Series solution is: $y(x) = y(0) + xy'(0) - y(0)x^2 - \frac{1}{6}y'(0)x^3 - \frac{1}{120}y'(0)x^5 - \frac{1}{1680}y'(0)x^7$,

8 (a) (15 pts.) Find the eigenvalues and eigenfunctions for

$$x^2y'' + xy' + \lambda y = 0$$
 $y(1) = y(e^{\pi}) = 0$

Be sure to consider the cases $\lambda < 0, \lambda = 0$, and $\lambda > 0$.

Solution:

Note that this is an Euler equation. Since $p = 1, q = \lambda$ the indicial equation is

$$r^2 + (p-1)r + q = r^2 + \lambda = 0$$

I. $\lambda < 0$. Let $\lambda = -\alpha^2$ where $\alpha \neq 0$. Then the indicial equation is

$$r^2 - \alpha^2 = 0$$

so $m = \pm \alpha$. Thus

$$y = c_1 x^{\alpha} + c_2 x^{-\alpha}$$

The boundary conditions imply

$$c_1 + c_2 = 0$$

$$c_1 e^{\alpha \pi} + c_2 e^{-\alpha \pi} = 0$$

This leads to $c_1 = c_2 = 0$, so y = 0 and there are no negative eigenvalues.

II. $\lambda = 0$. The DE for this case is

$$x^2y'' + xy' = 0$$

or

$$xy'' + y' = 0$$

Let v = y' so we have

$$xv' + v = 0$$

$$(xv)' = 0$$

Then $v = \frac{c_1}{x}$, and $y = c_1 \ln x + c_2$. The BCs lead to

$$c_1 + c_2 = 0$$

$$c_1 \ln e^{\pi} + c_2 = 0$$

or

$$c_1 + c_2 = 0$$

$$\pi c_1 + c_2 = 0$$

Again we have $c_1 = c_2 = 0$, so $\lambda = 0$ is not an eigenvalue.

III. $\lambda > 0$. Let $\lambda = \beta^2$ where $\beta \neq 0$. The indicial equation is

$$r^2 + \beta^2 = 0$$

SO

$$r = \pm \beta i$$

Thus

$$y = c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x)$$

The BCs imply

$$c_1 = 0$$
 and $c_2 \sin \beta \pi = 0$

Thus c_2 is arbitrary

$$sin(\beta\pi) = 0 \Rightarrow \beta = n \text{ for } n = 1, 2, ...$$

Eigenvalues:

$$\lambda_n = \beta^2 = n^2 \, n = 1, 2, \dots$$

Eigenfunctions:

$$y_n = c_n \sin(n \ln x)$$

8(b) (10 pts.) Show that if the equation

$$\left(\frac{y^2}{2} + 2ye^x\right)dx + (y + e^x)dy = 0$$

is multiplied by e^x , then the resulting equation is exact and then solve this equation. Solution: Multiplying by e^x we have

$$\left(\frac{y^2e^x}{2} + 2ye^{2x}\right)dx + \left(ye^x + e^{2x}\right)dy = 0$$

SO

$$M_{y} = \frac{\partial \left(\frac{y^{2}e^{x}}{2} + 2ye^{2x}\right)}{\partial y} = ye^{x} + 2e^{x} = N_{x} = \frac{\partial \left(ye^{x} + e^{2x}\right)}{\partial x}$$

so the multiplied equation is now exact. Hence there exists f(x, y) such that

$$f_X = M = \frac{y^2 e^x}{2} + 2ye^{2x}$$

$$f_y = N = ye^x + e^{2x}$$

Starting with f_y and integrating with respect to y we have

$$f(x,y) = \frac{y^2}{2}e^x + ye^{2x} + g(x)$$

SO

$$f_x = \frac{y^2}{2}e^x + 2ye^{2x} + g'(x) = M = \frac{y^2e^x}{2} + 2ye^{2x}$$

Thus g'(x) = 0 so g(x) = k where k is a constant. Thus the solution is given by

$$\frac{y^2}{2}e^x + ye^{2x} = C$$

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$n \ge 1$	<i>s</i> > 0
e ^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		<i>s</i> > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		

Table of Integrals

$\int \sin^2 x dx = -\frac{1}{2}\cos x \sin x + \frac{1}{2}x + C$
$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$
$\int x \cos bx dx = \frac{1}{b^2} (\cos bx + bx \sin bx) + C$
$\int \tan ax dx = -\frac{1}{a} \ln(\cos ax) + C$
$\int \sec ax dx = \frac{1}{a} \ln \sec ax + \tan ax + C$
$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax + C$
$\int x \sin bx dx = \frac{1}{b^2} (\sin bx - bx \cos bx) + C$
$\int \left(\frac{e^{-t}}{1+e^{-t}}\right) dt = -\ln(1+e^{-t}) + C$
$\int \left(\frac{e^{-2t}}{1+e^{-t}}\right) dt = \ln(1+e^{-t}) - e^{-t} + C$
$\int xe^{ax}dx = \frac{1}{a^2}(axe^{ax} - e^{ax}) + C$