#8b

Total Score

Name Lecturer

1.

(a) (8 pts) Solve

$$xy' + 2y = 8x^2 + 6x$$
 $y(1) = 2$.

(b) (7 pts) Solve

$$(2xy^3 + 6x)dx + (3x^2y^2 + 10y)dy = 0.$$

Name			
Tanic			

1 (c) (10 pts) Find a general solution of

$$2x^2y'' - 3xy' + 2y = 0.$$

2. (a) (12 pts) Find a general solution of

$$y'' - 5y' + 6y = 8e^t + 12t.$$

2(b) (13 pts.) Find a general solution of

$$y'' + y = \sec x.$$

3. (a) (10 pts.) Let

$$g(t) = \begin{cases} 1 & \text{for } 0 \le t \le 3 \\ e^{4t} & \text{for } 3 < t < \infty \end{cases}.$$

Use the definition of the Laplace transform to find $\mathcal{L}\{g(t)\}$.

(b) (15 pts.) Solve using Laplace Transforms:

$$y'' - 4y' + 4y = te^t$$
 $y(0) = 0$, $y'(0) = 1$.

4.) a.) (10 pts.) Use separation of variables, u(x,t) = X(x)T(t), to find two ordinary differential equations which X(x) and T(t) must satisfy to be a solution of

$$e^{x+t}\frac{\partial^2 u}{\partial x^2} - x^3(t+4)^5\frac{\partial^2 u}{\partial t^2} = 0.$$

Note: Do **not** solve these ordinary differential equations.

b.) (15 pts.) Find

$$\mathcal{L}^{-1}\left\{\frac{4s^2 - 2s + 30}{(s+2)(s^2 - 4s + 13)}\right\}.$$

5. (a) (15 pts.) Find the first five non-zero terms of the Fourier sine series for the function

$$f(x) = \begin{cases} \pi & 0 < x < \pi \\ 0 & \pi < x < 2\pi \end{cases}$$

5(b) (10 pts.) Sketch the graph of the function represented by the Fourier *sine* series in 5 (a) on $-2\pi < x < 4\pi$.

Name		
rvaine		

6 (25 pts.) Solve

PDE
$$u_{xx} - 16u_{tt} = 0$$
BCs
$$u(0,t) = 0 \qquad u_x(1,t) = 0$$
IC
$$u(x,0) = -6\sin\left(\frac{3\pi x}{2}\right) + 13\sin\left(\frac{11\pi x}{2}\right)$$
IC
$$u_t(x,0) = 0$$

You must derive the solution. Your solution should not have any arbitrary constants in it. Show **all** steps.

Name			

7. (a) (13 pts.) Find a general solution of

$$y'' + y = x\cos x - \cos x$$

Name	Lecturer

7 (b) (12 pts.) Find the power series solution to

$$y'' - xy = 0$$

near x = 0. Be sure to give the recurrence relation. Indicate the two linearly independent solutions and give the first six nonzero terms of the solution.

Name			
Tanic			

8 (a) (15 pts.) Find the eigenvalues and eigenfunctions for

$$y'' + \lambda y = 0$$
 $y'(0) = y'(2\pi) = 0$

Be sure to consider the cases $\lambda < 0, \lambda = 0$, and $\lambda > 0$.

8(b) (10 pts.) Solve

$$\frac{dy}{dx} + \frac{y}{x} = \frac{1}{xy^2} \quad x > 0$$

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$n \ge 1$	<i>s</i> > 0
e ^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		<i>s</i> > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		

Table of Integrals

$\int \sin^2 x dx = -\frac{1}{2}\cos x \sin x + \frac{1}{2}x + C$
$\int \cos^2 x dx = \frac{1}{2} \cos x \sin x + \frac{1}{2} x + C$
$\int x \cos bx dx = \frac{1}{b^2} (\cos bx + bx \sin bx) + C$
$\int x \sin bx dx = \frac{1}{b^2} (\sin bx - bx \cos bx) + C$
$\int \left(\frac{e^{-t}}{1+e^{-t}}\right) dt = -\ln(1+e^{-t}) + C$
$\int \left(\frac{e^{-2t}}{1+e^{-t}}\right) dt = \ln(1+e^{-t}) - e^{-t} + C$
$\int xe^{ax}dx = \frac{1}{a^2}(axe^{ax} - e^{ax}) + C$
$\int \tan x dx = -\ln(\cos x) + C$
$\int \sec x dx = \ln(\sec x + \tan x) + C$