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Review of Power Series
Please note that there is material on power series at Visual Calculus. Some of this material was used as
part of the presentation of the topics that follow.

The Ratio Test
Recall

Definition: A series∑an is called absolutely convergent if the series of absolute values∑|an| is
convergent.

Ratio Test: Given a series∑an, let L  lim
n→

an1
an

(a) If L  1, then the series converges absolutely.
(b) If L  1, then the series is divergent.
(c) If L  1, then the test fails (i.e., is inconclusive.)

Remark For an example of (c) consider∑ 1
n and∑ 1

n2 . Both have a value of 1 for L. Yet,

the former diverges, whereas the latter converges.

Example Determine whether

∑
n1


n  15n

n32n

is convergent.
Solution: We apply the Ratio Test.

L  lim
n→

n  25n1

n  132n2

n  15n

n32n

 lim
n→

n  25n1

n  132n2  n32n

n  15n  lim
n→

5
32

n2  2n
n2  2n  1

 5
9
 1.

Therefore, the given series converges by the Ratio Test.
Example Test the series

∑
n1


−1n4n

n!

for convergence or divergence.
Solution: Using the Ratio Test we have
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L  lim
n→

−1n14n1

n  1!
−1n4n

n!

 lim
n→

4n1

n  1!
 n!

4n  lim
n→

4
n  1

 0

Thus this series converges absolutely, since L  1.

What is a Power Series?

Recall that the geometric series∑
n0



arn converges to a
1 − r

provided |r|  1. In this section we will

take the ratio r to be a variable x. In particular, the geometric series

∑
n0



axn  a  ax  ax2  ax3 

is an example of a power series. It converges on the interval −1  x  1, which we say is centered at 0
and has radius 1. All this will be generalized in this section.

Definition A power series is a series of the form

Sx ∑
n0



cnx − an  c0  c1x − a  c2x − a2  c3x − a3 

where a,c0,c1,c2,… are constants. The numbers cn are called the coefficients of the
series and the number a is called the center of the series. We also say that the series is
expanded about x  a and that the n th-order term is cnx − an.

Remark In the 0th-order term c0x − a0  c0 we follow the convention that x − a0  1,
even when x  a, in spite of the fact that 00 is normally undefined. All the remaining
terms go to 0 when x  a, since a − an  0n  0 for n ≠ 0. Therefore Sa  c0.

Remark Very often we consider power series centered at x  0 which have the simpler form

∑
n0



cnxn  c0  c1x  c2x2  c3x3 

Example For the series

∑
n0


3n  12

2n x − 5n  3  6x − 5  27
4
x − 52  6x − 53 

identify the center and the coefficient of the 4th-order term.

Solution: The center is at x  5. The coefficient of the n th-order term is cn 
3n  12

2n . So the

coefficient of 4th-order term is

c4 
34  12

24  75
16
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Exercise For the series

∑
n0



−1n 2
n  2

x  4n

1. Identify the center.

− 2 2 − 4 4

2. Identify the coefficient of the 3rd-order term.

2
5

− 2
5

1
2

− 1
2

3. Write out the terms of the series up to 3rd-order......................................

Radius of Convergence
Recall that the geometric series

∑
n0



axn  a  ax  ax2  ax3 

converges on the interval −1  x  1, which we say is centered at 0 and has radius 1. For a general
power series, we have:

Theorem (Power Series Convergence Theorem) The convergence of a power series

Sx ∑
n0



cnx − an  c0  c1x − a  c2x − a2  c3x − a3 

is characterized by one of the following three cases:
1. There is a positive number R, called the radius of convergence, such that the

series Sx converges absolutely on the interval a − R,a  R. The series
may also converge at one, both or neither of the endpoints a − R and a  R.

2. The series Sx converges only for x  a. In this case, we say that the radius
of convergence is R  0.

3. The series Sx converges for all real numbers x. In this case, we say that
the radius of convergence is R  .

Note that a Power Series always converges for x  a, since at x  a ∑
n0



cnxn  c0. It may or may not

converge for other values of x.
Remark Notice that the center of the interval a − R,a  R is at a, which is the center of the

series. Further, the interval a − R,a  R can also be specified by either of the triple
inequalities

a − R  x  a  R or − R  x − a  R

or by the absolute value inequality

|x − a|  R.
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Remark The radius of convergence is usually found by applying the ratio test to the
series.

Example Find the center and radius of convergence of the series∑
n0


n  12

2n x − 5n.

Solution: The center is a  5. To find the radius we apply the ratio test

an 
n  12

2n x − 5n and an1 
n  22

2n1 x − 5n1

L  lim
n→

|an1 |
|an |

 lim
n→

n  22

2n1 x − 5n1 2n

n  12
1

x − 5n

 lim
n→

n  2
n  1

2 |x − 5|
2

 |x − 5|
2

lim
n→

n  2
n  1

2

 |x − 5|
2

The ratio test says the series converges absolutely if L  1. In other words, |x − 5|
2

 1 or |x − 5|  2,

from which we identify the radius of convergence as R  2. Thus, the series converges absolutely on
the interval 3,7.

Now you do it:

Exercise Find the center and radius of convergence of the series∑
n0



−3nx − 2n. ...

The example and exercise above illustrate the first case in the Power Series Convergence Theorem.
Here are some examples of the other two cases and of the use of the ratio test:

Example Find the center and radius of convergence of the series∑
n0


−2n

n!
x  1n.

Solution: The center is a  −1. To find the radius we apply the ratio test:

|an |  2n

n!
|x  1|n and |an1 |  2n1

n  1!
|x  1|n1

L  lim
n→

|an1 |
|an |

 lim
n→

2n1

n  1!
|x  1|n1 n!

2n
1

|x  1|n

 lim
n→

n!
n  1!

2|x  1|  lim
n→

1
n  1

2|x  1|

 0 for all x.

The ratio test says the series converges absolutely if L  1. Since L  0, the series converges for all x
and the radius of convergence is R  .

Example Find the center and radius of convergence of the series∑
n0


−1nn!

2n x  1n.

Solution: The center is again a  −1. To find the radius we apply the ratio test:

4



|an |  n!
2n |x  1|n and |an1 | 

n  1!
2n1 |x  1|n1

L  lim
n→

|an1 |
|an |

 lim
n→

n  1!
2n1 |x  1|n1 2n

n!
1

|x  1|n

 lim
n→

n  1!
n!

1
2

|x  1|  lim
n→

n  1
2

|x  1|


 for all x except x  −1

0 for x  −1.

The ratio test says the series diverges if L  1 and converges if L  1. So, the series diverges for all x
except x  −1 and converges for x  −1. Thus, the radius of convergence is R  0.

And some more exercises:

Exercise Find the center and radius of convergence of the series∑
n0


−1n

n!
x − 3n................

...

Exercise Find the center and radius of convergence of the series∑
n0


n!
2n x − 1n.. ...

Interval of Convergence

Definition The Power Series Convergence Theorem implies that a power series

Sx ∑
n0



cnx − an  c0  c1x − a  c2x − a2  c3x − a3 

converges on an interval called its interval of convergence. This interval may consist
of a single point a, the set of all real numbers −,, or a finite interval which may
be open: a − R,a  R, closed: a − R,a  R, or half open: a − R,a  R or
a − R,a  R.

We have seen that the center a may be read off the series, and the radius R may be determined using the
ratio test (or the root test). It remains to determine the convergence at the endpoints of the interval of
convergence.

Remark It is much more important to be able to determine the radius of convergence than it is
to be able to determine whether the series converges at the endpoints of the interval of
convergence.

Remark You cannot use the ratio test or the root test to determine the convergence at the
endpoints, because these tests fail when L  1 which is precisely at the endpoints of the
interval of convergence. You must use some other test.

The following three examples illustrate the three cases of an open, closed or half open interval of
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convergence.

Example Find the interval of convergence of the series∑
n0


2
3n x − 1n............................ ...

Example Find the interval of convergence of the series∑
n0


2

3nn2 x − 1n........................ ...

You try this one first:

Example Find the interval of convergence of the series∑
n0


2

3n n
x − 1n...................... ...

Example For what values of x is the series

∑
n1


n2x − 1n

4n  2x − 1
4


22x − 12

16


32x − 13

64


convergent?
We shall use the Ratio Test again.

L  lim
n→

n  12x − 1n1

4n1  4n

n2x − 1n  lim
n→

2x − 1
4

.

For the series to converge we must have L  1, that is 2x − 1
4

 1 or equivalently 1
2 x − 1

4  1.

Thus

− 1  x
2
− 1

4
 1

or

− 3
4
 x

2
 5

4

or finally

− 3
2
 x  5

2

Hence, the series converges if − 3
2
 x  5

2
and diverges for x  5

2
and x  − 3

2
. The cases when

x  − 3
2

and x  5
2

must be tested separately.

When x  − 3
2

, then∑
n1

 n2x − 1n

4n ∑
n1

 n−4n

4n ∑
n1



n−1n, which diverges since the n th term of

this series does not go to zero as n → .

When x  5
2

, then∑
n1

 n2x − 1n

4n ∑
n1

 n4n

4n ∑
n1



n, which again diverges. Why?

Thus this series converges in − 3
2
 x  5

2
and this is the Interval of Convergence. For this example
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R  2.
Exercise Find the interval of convergence and the radius of convergence of

∑
n1


3n

n x − 1n
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