
Ma 227 Final Exam 10 May 1995
Directions: This examination is in two parts. In Part I you must answer all six (6)

problems. In Part II choose any two questions. Indicate on your blue book(s) which questions
you have chosen.

Problem 1
a) (8 points)
Find the first four nonzero terms of the Fourier sine series of

fx 
0 0  x  

−2   x  2

Solution:
If fx is a function defined on 0,L, then its Fourier sine expansion is given by

fx  ∑n1
 an sin nx

L
where an  2

L


0

L
fx sin nx

L
dx

Here L  2 so that fx  ∑n1
 an sin nx

2
and

an  1
 0

2
fx sin nx

2
dx

Hence an  1
 0


0sin nx

2
dx  



2
−2 sin nx

2
dx 

1
 4

cosn − cos 1
2 n

n .

Evaluating this last expression for n  1,2,3,4,5 we get
n  1 a1  4

 −1

n  2 a2  8
 1

n  3 a3  12
 − 1

3  − 4


n  4 a4  16
 0  0

n  5 a5  20
 − 1

5   −
4


Thus fx  − 4
 sin x

2
 8
 sinx − 4

 sin 3x
2

 0sin2x − 4
 sin 5x

2


b) (8 points)
Sketch the graph of the function to which the Fourier sine series of the function

fx 
0 0  x  

−2   x  2

converges on −2  x  4.

Solution



The graph of the given function is below.

Since we were asked to find the Fourier sine expansion of fx, this means that we are seeking
an odd expansion of f. Hence the graph above is reflected first across the y − axis, and then
across the x − axis to get an odd function. The result is given below.

The Fourier sine series generates an odd function with period 2L. Here L  2, so the function
generated by the Fourier series has period 22  4. Since the last graph above given the
function on the interval −2, 2, i.e., on an interval of length 4, we may move this graph
either to the left or the right to get the function anywhere. Thus we have



c) (9 points)
Find the eigenvalues and eigenfunctions for the problem

y ′′  y  0, y ′0  y ′1  0

Be sure to check the cases   0,   0, and   0 .
Solution
I. Consider the case   0 first. Let   −2 where  ≠ 0. The DE becomes

y ′′ − 2y  0.

The general solution of this equation is yx  c1ex  c2e−x. Thus

y ′x  c1ex − c2e−x

y ′0  c1 − c2  0 and y ′1  c1e − c2e−  0.

The first equation implies that c1  c2. Thus the second equation becomes c1e − e−  0.
Thus c1  0, this tells us that c2  0 also. Therefore y  0 is the only solution if   0.

II. Suppose   0. The DE becomes y ′′  0 which has the solution y  c1x  c2. The
boundary conditions imply c1  0, so that y  c2. Thus y  c2 where c2 ≠ 0 is an
eigenfunction corresponding to the eigenvalue   0.

III. Suppose   0. Let   2 where  ≠ 0. The DE becomes

y ′′  2y  0.

The general solution of this equation is yx  c1 sinx  c2 cosx. Thus

y ′x  c1cosx − c2 sinx

Now y ′0  c1  0 Since  ≠ 0, we must have c1  0. Thus yx  c2 cosx. Now
y ′x  −c2 sinx and y ′1  −c2 sin  0. For a nontrivial solution we must have
c2 ≠ 0. This means that sin  0 or   n, n  1,2,3,… The eigenvalues are therefore
  2  n22 and the corresponding eigenfunctions are yn  an cosnx, n  1,2,3,…



We may also include the eigenfunction found in II above by allowing n to equal 0. Hence all
of the eigenfunctions are given by yn  an cosnx, n  0,1,2,3,… with corresponding
eigenvalues   n22, n  0,1,2,3,…

Problem 2
a) (10 points)
Use separation of variables, ux, t  XxTt , to find ordinary
differential equations which Xx and Tt must satisfy if ux, t
is to be a solution of

11t2x9uxx − t − 3x  2uttt  0

Solution

ux  X ′T, uxx  X ′′T, ut  XT′, etc.

Thus the given equation becomes

11t2x9X ′′T − t − 3x  2XT′′′  0

 11x9 X ′′

x  2X
 t − 3 T′′′

t2T
 k, k a constant

This yields the two ODEs
11x9X ′′ − kx  2X  0

t − 3T′′′ − kt2T  0
b) (15 points)

Solve:
P.D.E.: uxx − 4utt  0

B.C.’s: ux0, t  0 ux, t  0

I.C.’s: ux, 0  0 utx, 0  −8cos4x  17cos8x
Solution

Let ux, t  XxTt. Then differentiating and substituting in the PDE yields

X ′′T  4XT′′

 X ′′

X
 4 T′′

T
Using the argument that the left hand side is purely a function of x and the right hand side is
purely a function of t, and the only way that they can be equal is if they are equal to a constant,
we get

X ′′

X
 4 T′′

T
 k k a constant

This yields the two ordinary differential equations



X ′′ − kX  0 and T′′ − 1
4

kT  0

The boundary condition ux0, t  0 implies, since uxx, t  X ′xTt that
X ′0Tt  0. We cannot have Tt  0, since this would imply that ux, t  0. Thus
X ′0  0. Similarly, the boundary condition ux, t  0 leads to X ′  0.

We now have the following boundary value problem for Xx :

X ′′ − kX  0 X ′0  X ′  0

This boundary value problem is very similar to the one given in Problem 1(c) above. (Its
solution was discussed in the slide show Eigenvalues and Eigenfunctions for Boundary Value
Problems.) The solution is

k  −n2 Xnx  an cosnx n  1,2,3,…

Substituting the values of k into the equation for Tt leads to

T′′  n2

4
T  0

which has the solution Tnt  bn sin nt
2
 cn cos nt

2
, n  1,2,3, . . .

The initial condition ux, 0  0 implies XxT0  0 so that T0  0. Thus cn  0.

We now have the solutions

unx, t  An cosnx sin nt
2

n  1,2,3, . . .

Since the boundary conditions and the equation are linear and homogeneous, it follows that

ux, t  ∑n1
 unx, t  ∑n1

 An cosnx sin nt
2

satisfies the PDE, the boundary conditions, and the first initial condition. Since

utx, t  ∑n1
 An

n
2

cosnxcos nt
2

the last initial condition leads to

utx, 0  −8cos4x  17cos8x  ∑n1
 An

n
2

cosnx.

Matching the cosine terms on both sides of this equation leads to

A4
4
2

 −8 so that A4  −4 and A8
8
2

 17 so that A8  17
4

. All of the other

constants must be zero, since there are no cosine terms on the left to match with. Thus

ux, t  −4cos4x sin 4t
2
 17

4
cos8x sin 8t

2
 −4cos4x sin2t  17

4
cos8x sin4t



Problem 6
a) (15 points)

Verify Stokes’ Theorem for the vector v  y i − x j , where S is the
hemisphere x2  y2  z2  9, z ≥ 0 .

SOLUTION

We shall use the outward normal N. We calculate 
∂S

F  d r first. Now ∂S is the circle

x2  y2  9, z  0. We parametrize this as

x  3cos t, y  3sin t, z  0 0 ≤ t ≤ 2

F  3sin t i − 3cos t j
r t  x i  y j  zk  3cos t i  3sin t j  0k  r

′
t  −3sin t i  3cos t j

Thus, 
∂S

F  d r  
0

2
−9sin2t − 9cos2tdt  

0

2
−9dt  − 18

Now consider  
S

curl F  N ds .

curl F 

i j k
∂
∂x

∂
∂y

∂
∂z

y −x 0

 −2k

S is the surface x2  y2  z2  9 z ≥ 0. In spherical coordinates,   3 
x  3sincos, y  3sin sin, z  3cos Let u   v  

and therefore r u,v  3sinucosv i  3sinu sinv j  3cosuk
ru  rv  9sin2ucosv i  9sin2u sinv j  9sinucosuk

At   
2 ,   0, i.e., u  

2 v  0 
ru  rv  9 i , which is outward. Hence N  ru  rv is outward.

Now curl F  N  −9sinucosu

 
S
curl F  Nds  

0

2 
0


2 −18sinucosududv  

0

2 
0


2 −9sin2ududv  − 18, as

before. QED.

b) (10 points)
Find the value of the line integral 

C
xdx  x  ydy  x  y  zdz,

where C is the line segment from 1,0,−1 to 2,3,4.
SOLUTION

The line segment given is in 3D. We have to parametrize it first.
x−x0
x1−x0

 y−y0
y1−y0

 z−z0
z1−z0

 t (these equalities mean simply that the slope is the same for x, y,
and z).

That is, x−1
1  y−0

3  z1
5  t

Consequently, x  t  1, y  3t, z  5t − 1, which is our parametrization.

Now, dx  dt, dy  3dt, dz  5dt. Using, for example, that x goes from 1 to 2, we



determine that
the parameter t goes from 0 to 1.

The integral becomes:


C
xdx  x  ydy  x  y  zdz  

0

1
t  1dt  3t  1  3tdt  5t  1  3t  5t − 1dt 

 
0

1
t  1  3t  3  9t  5t  5  15t  25t − 5dt  

0

1
58t  4dt  33

Problem 7
a) (10 points)

Find the surface area of the caps cut from the sphere x2  y2  z2  4
by the cylinder x2  y2  1 . Sketch the surface.

SOLUTION

A   
Ax,y

1  fx
2  fy

2 dxdy

fx,y  4 − x2 − y2

fx 
∂ 4−x2−y2

∂x  − x

4−x2−y2 
∴ fx

2  x2

4−x2−y2

fy 
∂ 4−x2−y2

∂y  − y

4−x2−y2 
∴ fy

2  y2

4−x2−y2

The integrand becomes: 1  fx
2  fy

2  1  x2

4−x2−y2  y2

4−x2−y2  4
4−x2−y2

Now it is useful to switch to polar coordinates to make life easier: x  rcos, y  r sin.
dxdy  rdrd.
The integrand is, then, 4

4−x2−y2  4
4−r2 . The limits of integration are: r from 0 to 1

(limits set by the
cylinder!) and  from 0 to 2.
And the integral becomes
A  

0

2 
0

1 4
4−r2 rdrd  − 4 3  8.

We should not forget, though, that the above area is of one cap only, and has to be taken
twice,

so the answer is
Atotal  2A  2−4 3  8  16 − 8 3 .

b. (15 points)
Let S be the surface of the solid cylinder T bounded by z  0 and



z  3 and x2  y2  4. Evaluate 
S

F  ndS, where

F  x2  y2  z2x i  y j  zk  and n is the outward unit normal.

Sketch the surface.

SOLUTION

S is composed of S1,S2, and S3.

On S1 n  −k  F  n  −zx2  y2  z2.
But z  0 on S1  F  n  0   

S1
F  nds  0.

On S3 z  3, n  k  F  n  zx2  y2  z2  3x2  y2  9  3x2  3y2  27.
ds  dxdy  introduce polar coordinates: x  rcos, y  r sin, ds  dxdy  rdrd.
 

S3
F  nds   

S3
3x2  3y2  27dxdy  

0

2 
0

2
3r2 sin2  3r2 cos2  27rdrd 

132

On S2 we shall use cylindrical coordinates x  rcos y  r sin z  z
Since our cylinder is x2  y2  4  r  2 

r  2cos i  2sin j  zk where 0 ≤ z ≤ 3.
Taking u   v  z here, we have

r  −2sin i  2cos j rz  k

 r  rz  2cos i  2sin j  |r  rz| 2
Thus n  cos i  sin j . This is outward.

F  n  4cos2  4sin2  z22cos i  2sin j  zk   cos i  sin j  
 4  z22cos i  2sin j  zk   cos i  sin j  
 4  z22cos2  2sin2  8  2z2.
Hence  

S2
F  nds  

0

2 
0

3
28  2z2dzd  168

Thus we have finally



 
S

F  nds   
S1
  

S2
  

S3
F  nds  0  132  168  300.

Problem 8
a) (13 points)

Let S be the surface of the region V bounded by z  0, y  0, y  2,
and the parabolic cylinder z  1 − x2 . Apply the divergence theorem to

compute  
S

F  ndS, where n is the outer unit normal to S and

F  x  cosy i  y  sin z j  z  exk .

SOLUTION

The Divergence Theorem states that  
S

F  ndS    
V

divFdV.

divF  ∇  F  3.

∴ 
S

F  ndS  
−1

1 
0

2 
0

1−x2

3dzdydx  8.

b) (12 points)
Find the volume of the region T that is bounded by the parabolic
cylinder x  y2 and the planes z  0 and x  z  1.

SOLUTION
z goes from 0 to the plane 1 − x
y goes from − x to  x
x goes from 0 to 1.

∴ V  
0

1 
− x

x 
0

1−x
dzdydx  8

15 .

Problem 9
a) (15 points)

Find the eigenvalues of the matrix

2 0 0

1 0 2

0 0 3

Find the eigenvectors corresponding to the largest and smallest
eigenvalues.

SOLUTION



det

2 − r 0 0

1 −r 2

0 0 3 − r

 0, to find the eigenvalues r.

When we expand the determinant and solve for r, we obtain the eigenvalues: 0,2,3.
We have to find the eigenvectors corresponding to the first and the last of these.
Substitute 0 for r in the above matrix and multiply on the right by the desired eigenvector

(unknown).

2 − r 0 0

1 −r 2

0 0 3 − r



x1

x2

x3



0

0

0

2 0 0

1 0 2

0 0 3



x1

x2

x3



0

0

0

, and we find the eigenvector

0

1

0

.

Do the same for the eigenvalue 3.

2 − r 0 0

1 −r 2

0 0 3 − r



x1

x2

x3



0

0

0

−1 0 0

1 −3 2

0 0 0



x1

x2

x3



0

0

0

, and we find the eigenvector

0

1
3
2

b) (10 points)
Let F be such that 

C
F  dr  0 for any closed path C. Prove that

 F  dr is path-independent.

PROOF
Take two arbitrary distinct points A ≠ B on the closed path C. Thus C is divided into two

parts.
Then 

C
F  dr  

A

B
F  dr  

B

A
F  dr  0

Both integrals go, say, counterclockwise, but the first integral goes from A to B along the
first part of C,

while the second goes from B back to A along the second part of C.
∴ IAB

I  
A

B
F  dr  −

B

A
F  dr  IBA

II Now lets switch the limits of the right-hand side

integral.
∴ IAB

I  
A

B
F  dr   

A

B
F  dr  −IBA

II  IAB
II .

So we obtain that the integrals are the same along two different paths, which we chose to be
arbitrary

by arbitrarily choosing the points A and B.
Consequently,  F  dr is path-independent; it doesn’t matter which way we go from A to B.


