
Ma 227 Final Exam Solutions 11 May 1998
Part I: Answer all questions.

Problem 1
a) (8 points)
Find the first four nonzero terms of the Fourier cosine series of

fx 
−1 0  x  

2

0 
2  x  

Solution
If fx is a function defined on 0,L, then its Fourier cosine expansion is given by

fx  ∑n1
 an cos nx

L

where a0  1
L


0

L
fxdx and an  2

L


0

L
fxcos nx

L
dx n  1,2,3, . . .

Here L   so that fx  ∑n1
 an cosnx,a0  1

 0


fxdx and an  2
 0


fxcosnxdx.

Thus a0  1
 0


2 −1dx  1

 0

2 0dx  − 1

2
. Also,

an  2
 0


2 −1cosnxdx  − 2

n sinnx0

2  − 2

n sin n
2

Therefore
a1  − 2

 , a2  0, a3   2
3

, a4  0, a5  − 2
5 , a6  0, a7   2

7

Hence
fx  − 1

2
− − 2

 cosx  0  cos2x  2
3

cos3x  0  cos4x − 2
5 cos5x  0  cos6x  2

7 cos7x

b) (8 points)
Sketch the graph of the function to which the Fourier series in (a) converges
on −2  x  3.
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c) (9 points)
Find the eigenvalues and eigenfunctions for the problem

y ′′  y  0 ; y0  0 ; y2  0

Be sure to check the cases   0,   0,and   0.
I. Consider the case   0 first. Let   −2 where  ≠ 0. The DE becomes

y ′′ − 2y  0.

The general solution of this equation is yx  c1ex  c2e−x. Thus

y0  c1  c2  0 and y2  c1e2  c2e−2  0.

The first equation implies that c1  −c2. Thus the second equation becomes
c1e2  e−2  0. Thus c1  0; this tells us that c2  0 also. Therefore y  0 is the only
solution if   0. Hence there are no negative eigenvalues.

II. Suppose   0. The DE becomes y ′′  0 which has the solution y  c1x  c2. The
boundary conditions imply y0  c1  0, so that y  c2. But y2  c2  0 so that
y  0. Hence there is no eigenfunction corresponding to the eigenvalue   0.

III. Suppose   0. Let   2 where  ≠ 0. The DE becomes

y ′′  2y  0.
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The general solution of this equation is yx  c1 sinx  c2 cosx. Thus

Now y0  c2  0 Thus yx  c2 sinx. Now y2  c2 sin2  0. For a nontrivial
solution we must have c2 ≠ 0. This means that sin2  0 or   n

2 , n  1,2,3,… The
eigenvalues are therefore   2  n22

4 and the corresponding eigenfunctions are
yn  an sin n

2 x, n  1,2,3,…

Problem 2
a) (10 points)
Use separation of variables, ux, t  XxTt, to find ordinary differential equations
which Xx and Tt must satisfy if ux, t is to be a solution of

5x5t2utt  t  35x  52uxx  0
Do not solve these equations.

Solution:
ux  X ′T, uxx  X ′′T, ut  XT′, utt  XT′′

Thus the given equation becomes

15t2x5XT′′  t  35x  52X ′′T  0

 15x5 X
x  52X ′′

 −t  35 T
t2T′′  k, k a constant

This yields the two ODEs
15x5X − kx  52X ′′  0

t  35T  kt2T′′  0

b) (15 points)
Solve:

P.D.E.: uxx  4ut B.C.’s: u0, t  u2, t  0

I.C.: ux, 0  −3sin x
2

 23sinx − 4sin2x

Let ux, t  XxTt. Then differentiating and substituting in the PDE yields

X ′′T  4XT′

 X ′′

X
 4 T′

T
Using the argument that the left hand side is purely a function of x and the right hand
side is purely a function of t, and the only way that they can be equal is if they are
equal to a constant, we get
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X ′′

X
 4 T′

T
 k k a constant

This yields the two ordinary differential equations

X ′′ − kX  0 and T′ − 1
4

kT  0

The boundary condition u0, t  0 implies that X0Tt  0. We cannot have Tt  0,
since this would imply that ux, t  0. Thus X0  0. Similarly, the boundary condition
u2, t  0 leads to X2  0.

We now have the following boundary value problem for Xx :

X ′′ − kX  0 X0  X2  0

This boundary value problem is the one given in Problem 1(c) above with k  −.The
solution is

k  − n
2 

2
Xnx  an sin n

2 x n  1,2,3,…

Substituting the values of k into the equation for Tt leads to

T′  n22

16
T  0

which has the solution Tnt  cne−
n22t

16 , n  1,2,3, . . .

We now have the solutions

unx, t  An sin n
2 xe−

n22t
16 n  1,2,3, . . .

Since the boundary conditions and the equation are linear and homogeneous, it follows that

ux, t  ∑n1
 unx, t  ∑n1

 An sin n
2 xe−

n22t
16

satisfies the PDE and the boundary conditions. Since

ux, 0  −3sin x
2

 23sinx − 4sin2x  ∑n1
 An sin n

2 x.

Matching the cosine terms on both sides of this equation leads to
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A1  −3 A2  23 and A4  −4. All of the other constants must be zero, since there
are no sine terms on the left to match with them. Thus

ux, t  −3sin x
2

e−
2

16
t  23sinxe−

2

4
t − 4sin2xe−

2t

Problem 3

a) (15 points)

Find the eigenvalues and eigenvectors of A 

1 2 −1

1 0 1

4 −4 5

.

1 −  2 −1

1 −  1

4 −4 5 − 



2 −  2 −  0

1 −  1

4 − 4 5 − 

 2 − −111 − 1

−4 5 − 
 2 − −112 1 1

4 5 − 

 2 − −5  2  4 − 2 − 5 −  − 4  2 − 2 − 4  3  2 −  − 3 − 1

Hence the eigenvalues are   1,2,3. The system of equations A − IX  0 for this
problem is

1 − x1  2x2 − x3  0
x1 − x2  x3  0

4x1 − 4x2  5 − x3  0

  1 
2x2 − x3  0

x1 − x2  x3  0
4x1 − 4x2  4x3  0

This system has the solution x3  2x2, x1  x2 − x3  −x2. The eigenvector is

therefore

1

−1

2

. Similarly we have for   2

1

− 1
2

−2

and for   3

1

−1

−4

.

b) (10 points)
Find the solution, if it exists, of
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x1  2x2 − 2x3  3x4 − 4x5  −3
2x1  4x2 − 5x3  6x4 − 5x5  −1
−x1 − 2x2 − 3x4  11x5  15

Solution:

1 2 −2 3 −4 −3

2 4 −5 6 −5 −1

−1 −2 0 −3 11 15

→−2R1R2

R1R3

1 2 −2 3 −4 −3

0 0 −1 0 3 5

0 0 −2 0 7 12

→−1R2

−2R2R3

1 2 −2 3 −4 −3

0 0 1 0 −3 −5

0 0 0 0 1 2

Since the rank of the coefficient matrix equals the rank of the augmented matrix, there
exists a solution. It is

x5  2 x3 − 3x5  −5 or x3  −5  3x3  −5  6  1 and x1  −2x2 − 3x4  7

Problem 4
a) (13 points)

Verify Green’s theorem when P  4x − 2y; Q  2x  6y and C is the ellipse
x  2cos, y  sin, 0 ≤  ≤ 2. (Recall that the area of the ellipse x2

a2  y2

b2  1 is
ab. )

SOLUTION

For this ellipse, a  2 and b  1. Let G be the interior of C. Green’s theorem
states that the two integrals 

C
Pdx  Qdy and 

G
Qx − Pydxdy are equal. We must

verify this.

Since Qx  2 and Py  −2,


G
Qx − Pydxdy  

G
4dxdy  4 

G
dxdy  4Area of G  421  8

The ellipse is already parametrized by . Since dx  −2sind and dy  cosd,


C
Pdx  Qdy  

C
4x − 2ydx  2x  6ydy

 
0

2
8cos − 2sin−2sin  4cos  6sincos d

 
0

2
−16sincos  4sin2  4cos2  6sincos d

 
0

2
4 − 10sincos d  8

The theorem has now been verified.

Problem 4
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b) (12 points)

Consider 
0

2 
y

2
fx,ydxdy.

a) Sketch the region of integration.
b) Write the integral reversing the order of integration.
c) Rewrite the integral in terms of polar coordinates.

SOLUTION

0

2

y

2x

b) Taking the limits from the sketch, we get 
0

2 
0

x
fx,ydydx

c) The limits on  are clear from the sketch. Noting that the polar equation of the line
x  2 is rcos  2 or r  2sec, we have 

0

/4 
0

2sec
frcos, r sinrdrd. Don’t forget

the extra factor of r inside the integral.

Problem 5
Consider the 

C
F  dr, where F  2xyz  z2y


i  x2z  z2x


j  x2y  2xyz


k

a) (12 points)

Show that ∇  F  0. What does this tell you about 
C

F  dr , where C is any closed

curve?

SOLUTION

∇  F  curl F 


i


j


k

∂
∂x

∂
∂y

∂
∂z

2xyz  z2y x2z  z2x x2y  2xyz

 x2  2xz − x2 − 2zx

i − 2xy  2yz − 2xy − 2zy


j  2xz  z2 − 2xz − z2


k  0

Then 
C

F  dr  0 for any closed curve C.

Or, equivalently, 
C

F  dr is independent of the path taken between two given points.
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b) (13 points)

Find a function x,y, z such that ∇  F

SOLUTION

F  ∇  ∂
∂x


i  ∂

∂y


j  ∂

∂z


k We set equal the corresponding components.

∂
∂x

 2xyz  z2y  x,y, z  x2yz  xyz2  C1y, z

∂
∂y

 x2z  z2x  x,y, z  x2yz  xyz2  C2x, z

∂
∂z

 x2y  2xyz  x,y, z  x2yz  xyz2  C3x,y

Comparing the three expression for , we let C1  C2  C3  C. Since C1 is
independent of x, so is C. Likewise, C2 is independent of y, and C3 of z.
Therefore C is independent of all variables, i.e. it is a constant.
Finally, we have x,y, z  x2yz  xyz2  C

Problem 6
a) (12 points)
Let S be the closed surface bounded by the parabolic cylinder z  1 − x2 and the
planes z  0, y  0, y  z  2. Sketch S.

SOLUTION

0

1

z

2
y

-1

1

x

b) (13 points)
Let S be the closed surface in 6 a), n the outward unit normal to S, and

F  xy

i  y2  exz2


j  sinxy


k . Use the Divergence Theorem to transform the


S

F  ndS into a triple integral. Do not evaluate the integral.
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SOLUTION


S

F  ndS  
V

divF dV  
V
y  2y  0 dV  

−1

1 
0

1−x2


0

2−z
3y dydzdx

The limits can be deduced from the sketch. Other correct expressions include:


0

1 
− 1−z

 1−z 
0

2−z
3y dydxdz 

0

1 
0

2−z 
− 1−z

 1−z
3y dxdydz

There is no way to express the integral in the forms dzdydx or dzdxdy or dxdzdy
without splitting the integral into two smaller integrals.

Problem 7
a) (10 points)

Without expanding show that

1 a b  c

1 b c  a

1 c a  b

 0

SOLUTION:
Using elementary operations on the columns we have,

1 a b  c

1 b c  a

1 c a  b

→−C2C1

1 0 b  c

1 b − a c  a

1 c − a a  b

→C2C3

1 0 b  c

1 b − a b  c

1 c − a b  c

 b  c

1 0 1

1 b − a 1

1 c − a 1

 0

Since the first and third columns are the same.

b) (15 points)

Use Stokes’ Theorem to compute the integral 
S

curlF  ndS, where F  yzi xzj xyk,

and S is the part of sphere x2  y2  z2  4 that lies inside the cylinder x2  y2  1 and
above the xy −plane. Sketch S.
(Note: cos2t − sin2t  cos2t. )

SOLUTION:

Stoke’s Theorem states that 
S

curlF  ndS  
∂S

F  dr. We want to find 
∂S

F  dr.

9



The region S is the part of the sphere x2  y2  z2  4 that lies inside the cylinder
x2  y2  1 and is above the xy −plane. To find where the sphere and the cylinder
intersect we set x2  y2  1 in the equation x2  y2  z2  4. This yields 1  z2  4 or
z  3 . Thus ∂S is given by x2  y2  1, z  3 . We parametrize this as

x  cos t, y  sin t, z  3 0 ≤ t ≤ 2

Hence rt  cos t i sin t j 3 k and r′t  − sin t i cos t j 0k and

Ft  3 sin t i 3 cos t j cos t sin t k


∂S

F  dr. 
0

2
Ft  r′tdt  

0

2
3 cos t − sin t dt  3 

0

2
cos2t dt  0

Problem 8

a) (10 points)
Find the volume of the solid bounded by the plane z  0 and the paraboloid
z  1 − x2 − y2. Sketch the volume.

SOLUTION:

xy

The paraboloid z  1 − x2 − y2 intersects the x,y −plane on the circle x2  y2  1. Let D
denote the inside of the circle. Then the volume is

V  
D


0

1−x2−y2

dzdA

Using cylindrical coordinates x  rcos, y  r sin, z  z we have,

V  
0

2 
0

1 
0

1−r2

r dzdrd  
0

2 
0

1
1 − r2rdrd  

2

b) (15 points)
Find the eigenvalues and eigenfunctions of

y ′′  y  0 y−  y y ′−  y ′
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SOLUTION:

We must consider the cases   0,  0,  0.
Case I.   0 Let   −2

y ′′ − 2y  0
The auxiliary equation is r2 − 2  0 which tells us that r   real distinct roots.
The characteristic equation is

y  c1ex  c2e−x

y ′  c1ex − c2e−x

y−  y  c1e−  c2e  c1e  c2e−  c1e − e−  c2e − e−

 c1  c2

y ′−  y ′  c1e− − c2e  c1e − c2e−

But c1  c2 so 2c1e  2c1e−. c1  0 so that c2  0. Thus y  0 is the only solution,
and there are no negative eigenvalues.
Case II.   0

y ′′  0
The auxiliary equation is r2  0, a repeated root.

y  c1x  c2

y−  y  −c1  c2  c1  c2  0
This implies that c1  0. This also satisfies y ′−  y ′ so y  c2 where c2 ≠ 0 is a
nontrivial solution corresponding to   0.

Case III.   0 Let   2, where  ≠ 0. The DE is then
y ′′  2y  0

The auxiliary equation is r2  2  0 which tells us that r  i complex roots.
The characteristic equation is

y  c1 cosx  c2 sinx
y ′  −c1 sinx  c2cosx

y−  y  0  c1 cos−  c2 sin−  c1 cos  c2 sin or

c1 cos − c2 sin  c1 cos  c2 sin  2c2 sin  0

y ′−  y ′ implies that −c1 sin−  c2cos−  −c1 sin  c2 cos
 2c1 sin  0. Thus if sin ≠ 0, since we have c1  c2  0. Hence for a nonzero
solution we must have sin  0.
This is true when   n, where n  1,2,3, . . . . .
Therefore the eigenvalues are n  n2 and the eigenfunctions are
yn  an cosnx  bn sinnx.
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Problem 9
a) (13 points)Suppose that fx  ∑ i1

 aiix, where 1,2,3, . . .  is an

orthonormal set on the interval a,b. Show that 
a

b
f2xdx  ∑ i1

 ai
2

SOLUTION:

By definition of orthonormality we know that


a

b
 ixjx dx   i, j 

1 if i  j

0 if i ≠ j


a

b
f2xdx  f, f  ∑ i1

 ai ix,∑ j1
 aj jx 

 a1
2  1x,1x  a1a2  1x,2x 

a1a3  1x,3x    a2a1  2x,1x 
 a2

2  2x,2x  a2a3  2x,3x  
However, since we have an orthonormal set we have that


a

b
f2xdx  a1

2  1x,1x  a2
2  2x,2x    ∑ i1

 ai
2

b.) (12 points)

Find the inverse of the matrix

1 2 3

0 0 1

2 3 0

. , inverse:

−3 9 2

2 −6 −1

0 1 0

SOLUTION:

Using row reduction,

1 2 3 1 0 0

0 0 1 0 1 0

2 3 0 0 0 1

→R2↔R3

1 2 3 1 0 0

2 3 0 0 0 1

0 0 1 0 1 0

→−2R1R2

1 2 3 1 0 0

0 1 6 2 0 −1

0 0 1 0 1 0

→−6R3R2

1 2 3 1 0 0

0 1 0 2 −6 1

0 0 1 0 1 0

→−2R2R1

1 0 3 −3 6 −2

0 1 0 2 −6 1

0 0 1 0 1 0
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→−3R3R1

1 0 0 −3 −9 −2

0 1 0 2 −6 −1

0 0 1 0 1 0

The inverse is

−3 9 2

2 −6 −1

0 1 0
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