1 a) Use cylindrical coordinates to parametrize the surface $z=2-x^{2}-y^{2}$, $z \geq 0$

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

The transforming equations for cylindrical coordinates are: $y=r \sin \theta \quad$ This is not a
parametrization for any surface because x, y, and z depend on three other variables. However, we can eliminate z from the right-hand side of the equations by noting that $z=2-r^{2}$ at every point on

$$
x=r \cos \theta
$$

the surface. Then the equations: $y=r \sin \theta$ form a parametrization for $z=2-x^{2}-y^{2}$ in terms of

$$
z=2-r^{2}
$$

the two parameters r and θ. The limits $0 \leq r \leq \sqrt{2}$ and $0 \leq \theta \leq 2 \pi$ can be gotten from a sketch of the surface. (See below.)

1 b) Use the parametrization in cylindrical coordinates from 1 a) to write an iterated integral for the surface area of the surface given in a). Do not evaluate this integral.

Use the equations from $1 a$) and recall that $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
Then we have $\vec{r}=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath}+\left(2-r^{2}\right) \hat{k}$ and $\vec{r}_{r}=\cos \theta \hat{\imath}+\sin \theta \hat{\jmath}-2 r \hat{k}$ and $\vec{r}_{\theta}=-r \sin \theta \hat{\imath}+r \cos \theta \hat{\jmath}$
Next calculate the cross product: $\vec{r}_{r} \times \vec{r}_{\theta}=\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \cos \theta & \sin \theta & -2 r \\ -r \sin \theta & r \cos \theta & 0\end{array}\right|=2 r^{2} \cos \theta \hat{\imath}+2 r^{2} \sin \theta \hat{\jmath}+r \hat{k}$

Then the surface element $d S=\left|\vec{r}_{r} \times \vec{r}_{\theta}\right| d r d \theta=\sqrt{4 r^{4} \cos ^{2} \theta+4 r^{4} \sin ^{2} \theta+r^{2}} d r d \theta=r \sqrt{4 r^{2}+1} d r d \theta$ Since this surface uniquely projects onto the xy plane, you can also use the formula $d S=\sqrt{1+z_{x}^{2}+z_{y}^{2}} d x d y=\sqrt{1+4 x^{2}+4 y^{2}} d x d y=r \sqrt{4 r^{2}+1} d r d \theta$

Therefore the surface area is $\iint_{S} d S=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} r \sqrt{4 r^{2}+1} d r d \theta$

2 a) Let S be the closed surface of the cubic box bounded by $x=0, x=1, y=0, y=1, z=0, z=1$. Let $\vec{v}=4 x z \vec{i}-y^{2} \vec{j}+y z \vec{k}$. Use the Divergence Theorem to find $\iint_{S} \vec{v} \cdot \vec{n} d S$.

By the Divergence Theorem $\iint_{S} \vec{v} \cdot \vec{n} d S=\iiint_{V} \operatorname{div} \vec{v} d V$
$=\iiint_{V}(4 z-2 y+y) d x d y d z=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(4 z-y) d z d y d x=\int_{0}^{1} \int_{0}^{1}(2-y) d y d x=\int_{0}^{1} \frac{3}{2} d x=\frac{3}{2}$

2 b) Let S^{*} be the above box which is now open at the bottom, i.e., at the end $z=0$. Use Stokes’ Theorem to show that $\iint_{S^{*}}(\operatorname{curl} \vec{v}) \cdot \vec{n} d S=0$. Here \vec{n} is the outward unit normal.

This is ∂S^{*}, the boundary of the surface S^{*}. It is a closed curve made up of four line segments. On $\partial S^{*}, z=0$.

By Stokes' Theorem: $\iint_{S^{*}}(\operatorname{curl} \vec{v}) \cdot \vec{n} d S=\oint_{\partial S^{*}} \vec{v} \cdot d \vec{r}=\oint_{\partial S^{*}} 4 x z d x-y^{2} d y+y z d z=\oint_{\partial S^{*}}-y^{2} d y$ using the fact that $z=0$ on ∂S^{*}. Our task is therefore to show that the line integral $\oint_{\partial S^{*}}-y^{2} d y=0$.

Notice that y is a constant on the line segments $y=0$ and $y=1$. Then $d y=0$ on those segments. Then we only need to show that the line integrals on the other two pieces add up to zero.
$\oint_{\partial S^{*}}-y^{2} d y=\int 0+\int_{0}^{1}-y^{2} d y+\int 0+\int_{1}^{0}-y^{2} d y=\int_{0}^{1}-y^{2} d y-\int_{0}^{1}-y^{2} d y=0$. Therefore it follows $\iint_{S^{*}}(\operatorname{curl} \vec{v}) \cdot \vec{n} d S=0$.

3 a) Find the inverse of $\left[\begin{array}{rr}3 & 2 \\ -2 & -2\end{array}\right]$.
Adjoin I to the matrix and row reduce until the original matrix becomes I.
$\left[\begin{array}{rrrr}3 & 2 & 1 & 0 \\ -2 & -2 & 0 & 1\end{array}\right]$ First, add row 2 to row 1 to produce a 1 in the 1,1 position.
$\left[\begin{array}{rrrr}1 & 0 & 1 & 1 \\ -2 & -2 & 0 & 1\end{array}\right]$ Next, add twice row 1 to row 2 to get a zero in the 2,1 position.
$\left[\begin{array}{rrrr}1 & 0 & 1 & 1 \\ 0 & -2 & 2 & 3\end{array}\right]$ Finally, divide R2 by -2 to get a 1 in the 2,2 position. There is already a zero in
the 1,2 position. This yields:
$\left[\begin{array}{rrrr}1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -\frac{3}{2}\end{array}\right]$ Therefore the desired inverse is $\left[\begin{array}{rr}1 & 1 \\ -1 & -\frac{3}{2}\end{array}\right]$

3 b) What is the rank of $\left[\begin{array}{rrrc}1 & -1 & 4 & 2 \\ 0 & 6 & -1 & 5 \\ -2 & 0 & 6 & 8 \\ -1 & 5 & 9 & 15\end{array}\right]$?

We must put this matrix into row-reduced echelon form, then count the rows which are not all zero.
$\left[\begin{array}{rrrc}1 & -1 & 4 & 2 \\ 0 & 6 & -1 & 5 \\ -2 & 0 & 6 & 8 \\ -1 & 5 & 9 & 15\end{array}\right]$

First, add R1 to R4 and add 2*R1 to R3. This gives three zeroes in the first
column.
$\left[\begin{array}{cccc}1 & -1 & 4 & 2 \\ 0 & 6 & -1 & 5 \\ 0 & -2 & 14 & 12 \\ 0 & 4 & 13 & 17\end{array}\right]$
$\left[\begin{array}{cccc}1 & -1 & 4 & 2 \\ 0 & -2 & 14 & 12 \\ 0 & 6 & -1 & 5 \\ 0 & 4 & 13 & 17\end{array}\right]$

Next, since -2 is easier to manipulate than 6 , switch R2 and R3.
second column.
$\left[\begin{array}{cccc}1 & -1 & 4 & 2 \\ 0 & -2 & 14 & 12 \\ 0 & 0 & 41 & 41 \\ 0 & 0 & 41 & 41\end{array}\right]$ Finally, add -1*R3 to R4 to produce $\left[\begin{array}{cccc}1 & -1 & 4 & 2 \\ 0 & -2 & 14 & 12 \\ 0 & 0 & 41 & 41 \\ 0 & 0 & 0 & 0\end{array}\right]$

This last matrix is in row-reduced echelon form because each row has more leading zeroes than the one above it. Therefore the rank is 3 .
 it (them).

The augmented matrix associated with the system is $\left[\begin{array}{rrrr}1 & -1 & 4 & 2 \\ 0 & 6 & -1 & 5 \\ -2 & 0 & 6 & 8 \\ -1 & 5 & 9 & 15\end{array}\right]$, which is the same as the
matrix in question 3 b). Therefore it reduced to the matrix $\left[\begin{array}{rrrr}1 & -1 & 4 & 2 \\ 0 & -2 & 14 & 12 \\ 0 & 0 & 41 & 41 \\ 0 & 0 & 0 & 0\end{array}\right]$. Dividing R2 by -2 and R3 by 41 we get $\left[\begin{array}{rrrr}1 & -1 & 4 & 2 \\ 0 & 1 & -7 & -6 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.

The rank of the augmented matrix we already found to be 3 . The rank of the coefficient matrix (i.e. not including the last column) is also three. Since the ranks are equal, the system will have a solution. To find it, we can convert the last matrix back to a system of equations:

$$
\begin{aligned}
x_{1}-x_{2}+4 x_{3} & =2 \\
x_{2}-7 x_{3} & =-6 \\
x_{3} & =1
\end{aligned} \quad \text { It is easy to see that } x_{1}=-1, x_{2}=1, \text { and } x_{3}=1 .
$$

