
Ma 227 Exam III Solutions Spring 1998

1 a) Use cylindrical coordinates to parametrize the surface z  2 − x2 − y2,
z ≥ 0

The transforming equations for cylindrical coordinates are:

x  rcos

y  r sin

z  z

This is not a

parametrization for any surface because x, y, and z depend on three other variables. However, we
can eliminate z from the right-hand side of the equations by noting that z  2 − r2 at every point on

the surface. Then the equations:

x  rcos

y  r sin

z  2 − r2

form a parametrization for z  2 − x2 − y2 in terms of

the two parameters r and . The limits
0 ≤ r ≤ 2 and 0 ≤  ≤ 2 can be gotten from a sketch of the surface. (See below.)

1 b) Use the parametrization in cylindrical coordinates from 1 a) to write an iterated integral for the
surface area of the surface given in a). Do not evaluate this integral.
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Use the equations from 1a and recall that r  xî  y̂  zk̂
Then we have r  rcosî  r sin̂  2 − r2 k̂ and rr  cosî  sin̂ − 2rk̂ and
r  −r sinî  rcos̂

Next calculate the cross product: rr  r 
î ̂ k̂

cos sin −2r

−r sin rcos 0

 2r2 cosî  2r2 sin̂  rk̂
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Then the surface element dS  |rr  r |drd  4r4 cos2  4r4 sin2  r2 drd  r 4r2  1 drd
Since this surface uniquely projects onto the xy plane, you can also use the formula
dS  1  zx

2  zy
2 dxdy  1  4x2  4y2 dxdy  r 4r2  1 drd

Therefore the surface area is 
S

dS  
0

2 
0

2
r 4r2  1 drd

2 a) Let S be the closed surface of the cubic box bounded by x  0, x  1, y  0, y  1, z  0, z  1.
Let v  4xzi− y2j yzk. Use the Divergence Theorem to find 

S
v  ndS.
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By the Divergence Theorem 
S

v  ndS  
V

div v dV

 
V
4z − 2y  ydxdydz  

0

1 
0

1 
0

1
4z − ydzdydx  

0

1 
0

1
2 − ydydx  

0

1 3
2

dx  3
2

2 b) Let S∗ be the above box which is now open at the bottom, i.e., at the end z  0. Use Stokes’
Theorem to show that 

S∗
curl v  ndS  0. Here n is the outward unit normal.
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This is ∂S∗, the boundary of the surface S∗. It is a closed curve made up of four line segments. On
∂S∗, z  0.

By Stokes’ Theorem: 
S∗

curl v  ndS  
∂S∗

v  dr  
∂S∗

4xzdx − y2dy  yzdz  
∂S∗
−y2dy

using the fact that z  0 on ∂S∗. Our task is therefore to show that the line integral 
∂S∗
−y2dy  0.

2



Notice that y is a constant on the line segments y  0 and y  1. Then dy  0 on those segments.
Then we only need to show that the line integrals on the other two pieces add up to zero.


∂S∗
−y2dy  0  

0

1 −y2dy  0  
1

0 −y2dy  
0

1 −y2dy − 
0

1 −y2dy  0. Therefore it follows


S∗

curl v  ndS  0.

3 a) Find the inverse of
3 2

−2 −2
.

Adjoin I to the matrix and row reduce until the original matrix becomes I.

3 2 1 0

−2 −2 0 1
First, add row 2 to row 1 to produce a 1 in the 1,1 position.

1 0 1 1

−2 −2 0 1
Next, add twice row 1 to row 2 to get a zero in the 2,1 position.

1 0 1 1

0 −2 2 3
Finally, divide R2 by -2 to get a 1 in the 2,2 position. There is already a zero in

the 1,2 position. This yields:

1 0 1 1

0 1 −1 − 3
2

Therefore the desired inverse is
1 1

−1 − 3
2
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3 b) What is the rank of

1 −1 4 2

0 6 −1 5

−2 0 6 8

−1 5 9 15

?

We must put this matrix into row-reduced echelon form, then count the rows which are not all zero.

1 −1 4 2

0 6 −1 5

−2 0 6 8

−1 5 9 15

First, add R1 to R4 and add 2*R1 to R3. This gives three zeroes in the first

column.

1 −1 4 2

0 6 −1 5

0 −2 14 12

0 4 13 17

Next, since -2 is easier to manipulate than 6, switch R2 and R3.

1 −1 4 2

0 −2 14 12

0 6 −1 5

0 4 13 17

Now, add 3*R2 to R3 and add 2*R2 to R4. This gives two zeroes in the

second column.

1 −1 4 2

0 −2 14 12

0 0 41 41

0 0 41 41

Finally, add -1*R3 to R4 to produce

1 −1 4 2

0 −2 14 12

0 0 41 41

0 0 0 0

This last matrix is in row-reduced echelon form because each row has more leading zeroes than the one
above it. Therefore the rank is 3.

3 c) Does the system

x1 −x2 4x3  2

6x2 −x3  5

−2x1 6x3  8

−x1 5x2 9x3  15

possess a solution or solutions? If it does, then find

it (them).
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The augmented matrix associated with the system is

1 −1 4 2

0 6 −1 5

−2 0 6 8

−1 5 9 15

, which is the same as the

matrix in question 3 b). Therefore it reduced to the matrix

1 −1 4 2

0 −2 14 12

0 0 41 41

0 0 0 0

. Dividing R2 by

-2 and R3 by 41 we get

1 −1 4 2

0 1 − 7 −6

0 0 1 1

0 0 0 0

.

The rank of the augmented matrix we already found to be 3. The rank of the coefficient matrix (i.e. not
including the last column) is also three. Since the ranks are equal, the system will have a solution. To
find it, we can convert the last matrix back to a system of equations:

x1 −x2 4x3  2

x2 −7x3  −6

x3  1

It is easy to see that x1  −1, x2  1, and x3  1.

5


