
Ma 227 Line Integrals

Definition. Let Px,y and Qx,y be functions of two variables whose first partial derivatives are continuous in an
open rectangle H of the x,y − plane. Consider an arc (curve) C in H whose parametric equations are

x  ft y  gt a ≤ t ≤ b

and are such that as t increases from a to b, the corresponding point ft,gt, traces the arc C from the point
A  fa,ga to the point B  fb,gb. Let f′ and g ′ be continuous for a ≤ t ≤ b.
Then


C

Px,ydx  Qx,ydy  
a

b
Pft,gtf′t  Qft,gtg ′tdt

is called the line integral of Px,ydx  Qx,ydy along C from A to B.
Remark: Notice that the right hand side above is an ordinary definite integral.

Example: Evaluate the line integral


C
x2 − y2dx  2xydy

along the curve C whose parametric equations are

x  t2; y  t3; 0 ≤ t ≤ 3
2

Solution: ft  t2 and gt  t2.  f′  2t and g ′  3t2 .


C
x2 − y2dx  2xydy  

0

3
2 t4 − t62t  2t2t33t2dt

 
0

3
2 2t5  4t7dt  8505

512

Remark: C may be described vectorially via

r t  ft i  gt j



r
′
t  f′t i  g ′t j

If we let

Fx,y  Px,y i  Qx,y j ,

then

Ft  Fft,gt  Pft,gt i  Qft,gt j



Fft,gt  r
′
t  Pft,gtf′t  Qft,gtg ′t
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Hence


C
Px,ydx  Qx,ydy  

a

b
Fft r

′
tdt  

C
F  d r

d r

Remark: The results we have given for two dimensions readily go over to three dimensions. We define the three
dimensional line integral as follows:

The curve may be described in three dimensions via

x  ft; y  gt; z  ht

or

r t  ft i  gt j  htk

If

Fx,y, z  Px,y, z i  Qx,y, z j  Rx,y, zk

then


C

F  d r  
C

Pdx  Qdy  Rdz  
a

b
Fft,gt,ht  r

′
tdt

 
a

b
Pft,gt,htf′t  Qft,gt,htg ′t  Rft,gt,hth ′tdt

Example: Compute 
C

F  d r where F  xy i  xz j − yk and C is the directed line segment C1 from 1,0,0 to

0,1,0 followed by C2 which is the segment from 0,1,0 to 0,1,1.
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Solution: On C1 z  0

y  −x  1 orx  1 − y

Let y  t x  1 − t 0 ≤ t ≤ 1

r t  1 − t i  t j  0  k  r
′
t  − i  j

F  xy i  xz j − yk  Ft  1 − tt i  0 j − t k


C1

F  dr  
0

1
Ft  r ′tdt  

0

1
t2 − tdt  − 1

6

On C2 x  0, y  1, z goes from 0 to1

Let z  t 0 ≤ t ≤ 1  r t  0 i  j  t k ; F  0 i  0 j − k and r
′
t  k


C2

 
0

1
−dt  −1.




C
 

C1


C2

 − 1
6
− 1  − 7

6


C

fds

Two Dimensions
Let C denote a plane curve given by the parametric equations

x  xt y  yt a ≤ t ≤ b

or equivalently by the vector equation rt  xti  ytj. Assume the curve is smooth, which means that the
tangent vector r′  dx

dt
i  dy

dt
j is continuous and never the zero vector. Let fx,y be a function defined at each

point of the curve C. The line integral of f along C is defined by the formula
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
C

fx,yds  lim
‖P‖→0
∑
i1

fxi,yi Δsi

In this formula s denotes arc length along the curve, P denotes a partition of the curve into n pieces, and ‖P‖is
the length of the longest piece. xi,yi  is a point on the ith piece. (The definition of an ordinary integral 

a

b
gxdx

is defined by a special case of this process, in which the curve C is the segment of the x-axis between a and b.) In
practice, this limiting process is rarely carried out, since


C

fx,yds  
a

b
fxt,yt ds

dt
dt

and the integral on the right is an ordinary integral. Recall that ds  dx2  dy2 and hence

ds
dt

 dx
dt

2
 dy

dt

2

Thus


C

fx,yds  
a

b
fxt,yt dx

dt

2
 dy

dt

2
dt

Example Evaluate


C
2  x2yds

where C is the upper half of the unit circle x2  y2  1.

Solution: We parametrize the upper half of the unit circle using

x  cos t y  sin t 0 ≤ t ≤ 

Then


C
2  x2yds  

0


2  cos2t sin t dx

dt

2
 dy

dt

2
dt

 
0


2  cos2t sin t sin2t  cos2t dt

 
0


2  cos2t sin tdt  2t − cos3t

3 0



 2  2
3

Three Dimensions
Let C denote a space curve given by the parametric equations

x  xt y  yt z  zt a ≤ t ≤ b

or equivalently by the vector equation rt  xti  ytj  ztk. Assume the curve is smooth, which means that
the tangent vector r′  dx

dt
i  dy

dt
j  dz

dt
j is continuous and never the zero vector. Let fx,y, z be a function

defined at each point of the curve C. The line integral of f along C is defined by the formula


C

fx,y, zds  lim
‖P‖→0
∑
i1

fxi,yi, zi Δsi.

Here, s denotes arc length along the curve, P denotes a partition of the curve into n pieces, and ‖P‖is the length
of the longest piece. The point xi,yi, zi  is a point on the ith piece. In practice, this limiting process is rarely
carried out, since


C

fx,y, zds  
a

b
fxt,yt, zt ds

dt
dt

and the integral on the right is an ordinary integral. In this case ds  dx2  dy2  dz2 and therefore
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
C

fx,y, zds  
a

b
fxt,yt, zt dx

dt

2
 dy

dt

2
 dz

dt

2
dt

Example
Evaluate


C

y sin zds

where C is the circular helix given by the equations

x  cos t, y  sin t z  t 0 ≤ t ≤ 2

Solution:


C

y sin zds  
0

2
sin t sin t dx

dt

2
 dy

dt

2
 dz

dt

2
dt

 
0

2
sin2t sin2t  cos2t  1 dt

 2
2 0

2
1 − cos2tdt

 2
2

t − sin2t
2 0

2
 2 

Path Independence
Find the value of


C

y2dx  x − ydy

from the point A  0,−2 to the point B  28,6
(a) along the path x  t3  1; y  2t; − 1 ≤ t ≤ 3;
(b) along the straight line segment AB
Solution:

(a) first x  t3  1 y  2t  x  y3

8
 1 or y3  8x − 8

Fx,y  y2 i  x − y j r  t3  1 i  2t j

Ft  2t2 i  t3  1 − 2t j r
′
t  3t2 i  2 j


C
 

−1

3
2t2  3t2  t3 − 2t  1  2dt  12t5

5
 2t4

4
− 4t2

2
 2t|−1

3  3088
5

Along path ( b ): Line goes from 0,−2 to 28,6

 slope m  62
28

 2
7  y  2  2

7 x or y  2
7 x − 2

Let x  7
2

t  y  t − 2 0 ≤ t ≤ 8
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Ft  t − 22 i  7
2

t − t  2 j  t − 22 i  5
2

t  2 j

r t  7
2

t i  t − 2 j  r
′
t  7

2
i  j


C
 

0

8
 7

2
t − 22  5

2
t  2dt  1072

3

Notice that the two paths give two different results.
Often one must consider situations in which the path C is a closed curve. Hence the starting point A and ending
point B are the same. This is usually written as


C

F  d r .

For plane curves we take the positive direction of C so that the interior of the closed curve is always to the left as
C is traversed.

Example: Show that


C

xdy − ydx
x2  y2

 2,

where C is the circle x2  y2  a2

Solution: Let x  acos t y  a sin t 0 ≤ t ≤ 2


C

 
0

2 acos tacos t − a sin t−a sin t
a2

dt

 
0

2
cos2t  sin2tdt  

0

2
dt  2

We have seen that the value of a line integral depends on the integrand, the endpoints A and B, and the arc C from
A to B. However, certain line integrals depend only on the integrand and endpoints A and B. Such integrals are
called path independent or are said to be independent of the path.
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Example: Show that the value of the integral


C
3x2 − 6xydx  −3x2  4y  1dy

is independent of the path taken from −1,2 to 4,3.
Solution: Here P  3x2 − 6xy Q  −3x2  4y  1
Suppose we could find a function Gx,y such that

Gx  P Gy  Q

Then


C

Pdx  Qdy  
C

Gxdx  Gydy  
C

dG  G4,3 − G−1,2.

which is a number independent of the path C.
This means that we want P dx  Q dy to be an exact differential. The condition for this is

∂P
∂y

 ∂Q
∂x

.

Here Py  −6x  Qx  such a G exists. Now

Gx  P  3x2 − 6xy


G  x3 − 3x2y  gy

where gy is a function of y.
But

Gy  −3x2  g ′y  Q  −3x2  4y  1


g ′y  4y  1 or gy  2y2  y  K.

Thus

Gx,y  x3 − 3x2y  2y2  y  K

whereC is a constant. Then G4,3  − 59  K and G−1,2  3  K
Thus


C
3x2 − 6xydx  −3x2  4y  1dy  −59  K − 3 − K  −62

We may summarize the above as follows:

Let Px,ydx  Qx,ydy be an exact differential of some function G in an open rectangular region H. If C is an
arc lying entirely in H with parametric equations

x  ft y  gt a ≤ t ≤ b

and f′ and g ′ are continuous, then


C

Px,ydx  Qx,ydy  Gfb,gb − Gfa,ga

where fa,ga and fb,gb are the endpoints of C.
Remark: If a line integral is path independent one may choose a path along which it is easy to evaluate the line
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integral.

Example: 
C
3x2 − 6xydx  −3x2  4y  1dy from −1,2 to 4,3. (This is the same example we dealt with

above.)


C
 

C1


C2

Note that dy  0 and y  2 on C1 and dx  0 and x  4 onC2 


C
 

−1

4
3x2 − 6xydx  

2

3
−3x2  4y  1dy

But y  2 in the first integral whereas x  4 in the second


C
 

−1

4
3x2 − 12xdx  

2

3
4y − 47dy  −62

Remark: Recall that

∇G  Gx i  Gy j

Also d r  dx i  dy j 

∇G  d r  Gxdx  Gydy.

Therefore if Pdx  Qdy is an exact differential, then


C

Pdx  Qdy  
C
∇Gx,y  d r

Remarks:
(1) The fact that a line integral is independent of path is equivalent to the statement that the line integral around
any closed path is zero. To see this let C be any closed path and P0 ≠ P1 be points on C.
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Then C  C1  C2. If the line integral is path independent 


C1

F  d r  
−C2

F  d r .

Thus 
C1

F  d r − 
−C2

F  d r  0

But − d r along − C2 is equivalent to d r along C2. Therefore


C1

F  d r  
C2

F  d r  
C

F  d r  0

Suppose now that


C

F  d r  0

for any closed path C.
Let P0 and P1 be any two points on C and C1 and C2 any two paths joining them.
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Then C  C1  −C2 is a closed path and


C

F  d r  
C1−C2

F  d r  0




C1

F  d r  
−C2

F  d r  0 or 
C1

F  d r  −
−C2

F  d r  
C2

F  d r

Hence the following are equivalent:


C

F  d r is path independent ↔ there exists a G such that F  ∇G

↔ 
C

F  d r  0 for any closed path C.

We have discussed path independence in two dimensions. Similar things hold in three dimensions.

Example: If F  y i − z j  xk is 
C

F  d r path independent?

Solution: The line integral is path independent  there exists a function x,y, z such that ∇  F. Suppose such
a  exists.


x  y; y  −z; z  x

Now z  x  x,y, z  xz  gx,y But x  z  ∂g
∂x

 y



z  y − ∂g
∂x
x,y
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But z is an independent variable and therefore not dependent upon x and y. Thus no such  can exist  
C

F  d r

is path dependent for this F.

Question: When does there exist a x,y, z such that ∇  F?

Theorem: Suppose F is a continuously differentiable function in a region D in space and that

curlF  0 in D

Then there exists a continuously differentiable, scalar function x,y, z, in D such that

F  ∇.

Remark: C : r t  xt i  yt j  ztk a ≤ t ≤ b . F force on a particle.
Then

Work  
C

F  d r

Example It can be shown that for the vector field

Fx,y, z  yz2x  yi xzx  2yj xyx  yk

curlF  ∇  F  0

Evaluate


C

F  dr

where C is the curve given by the vector equation

rt  1  ti 1  2t2 j 1  3t2 k 0 ≤ t ≤ 1

Solution:
Check (not required)

∇  yz2x  y,xzx  2y,xyx  y

 xx  y  xy − xx  2y,y2x  y − yx  y − xy, zx  2y  xz − z2x  y − yz

 0,0,0

Thus there exists fx,y, z such that gradf  F.

fx  yz2x  y

so

f  x2yz  xy2z  gy, z

Then

fy  x2z  2xyz  gy  xzx  2y

Therefore gy  0, so g  hz and

f  x2yz  xy2z  hz

Also

fz  x2y  xy2  h ′z  xyx  y

so h ′z  0. Thus

fx,y, z  x2yz  xy2z  K

r0  i j k

r1  2i 3j 4k
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
C

F  dr  f2,3,4 − f1,1,1  118

Green’s Theorem
There is a remarkable theorem that identifies a double integral over a region R with a line integral around its
boundary. It is known as Green’s Theorem.

Theorem: Let Px,y and Qx,y be functions of two variables which are continuous and have continuous first
partial derivatives in some rectangular region H in the x,y − plane. If C is a simple, closed, piecewise smooth
curve lying entirely in H, and if R is the bounded region enclosed by C, then


C
Px,ydx  Qx,ydy   

R

∂Q
∂x
− ∂P
∂y

dA

Corollary: Let R be a bounded region in the x,y − plane. Then the area of R is given by

A  1
2 C

xdy − ydx

where C is the boundary of R
Proof: Let P  − y

2
and Q  x

2
in Green’s Theorem. 


C

−y
2

dx  x
2

dy   
R

1
2
− − 1

2
dA   

R
dA  area of R

Example: Find the area of the region bounded by the curves y  x3 and y  x
1
2

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1x

.
Let C  C1  C2, where C2 : y  x

1
2 x : 1 → 0 and C1 : y  x3 0 ≤ x ≤ 1. Then C is a closed curve which

bounds the region. We shall use x as the parameter on C and the formula in the corollary. 

A  1
2 C

x dy − y dx

 1
2 C1

x3x2 dx − x3dx  1
2 C2

x 1
2

x−
1
2 dx − x

1
2 dx

 1
2 0

1
2x3dx − 1

4 1
0

x
1
2 dx  5

12

12



Example: Evaluate the line integral


C
x3  2ydx  4x − 3y2 dy

where C is the ellipse x2

a2
 y2

b2
 1

Solution: P  x3  2y, Q  4x − 3y2  Qx  4, Py  2
By Green’s Theorem:


C

Pdx  Qdy   
R
4 − 2dA  2   dA

Therefore we need the area of the ellipse which is  ab.   2 ab.

Example. Verify Green’s theorem for


C

3xydx  2x2dy

where C is the curve which bounds the region R above by y  x and below by y  x2 − 2x

-1

0

1

2

3

0.5 1 1.5 2 2.5 3x

Since P  3xy and Q  2x2 , we see that Qx − Py  4x − 3x  x. The curves intersect when x  x2 − 2x or
x2 − 3x  xx − 3  0. Hence when x  0,3.Thus

 Qx − Py dA  
0

3 
x2−2x

x
xdydx  27

4

C  C1  C2 where C1 : y  x2 − 2x C2 : y  x 0 ≤ x ≤ 3
On C1 :


C1

Pdx  Qdy  
0

3
3xx2 − 2xdx  

0

3
2x22x − 2dx

On C2 :


C2

Pdx  Qdy  
3

0
3xxdx  

3

0
2x2dx

A straight forward calculation shows that the sum of these last two expressions also equals 27
4

.

Example. Use Green’s theorem to evaluate


C

2y  9  x3 dx  5x  earctany dy

where C is the circle x2  y2  4.
Now Qx − Py  5 − 2  3. 

13




x2y2≤4

3dA  3area of a circle of radius 2  34  12

Example Evaluate


C
1  tanxdx  x2  ey dy

Where C is the positively oriented boundary of the region R enclosed by the curves y  x , x  1, and y  0. Be
sure to sketch C.
Solution:
The region enclosed by C is shown below.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

We use Green’s Theorem to evaluate the integral since C is a closed curve.


C
1  tanxdx  x2  ey dy   

R

∂x2  ey 
∂x

− ∂1  tanx
∂y

dA

 
0

1 
0

x
2x − 0dydx  2 

0

1
x

3
2 dx  4

5
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