Ma 227 Line Integrals

Definition. Let $P(x, y)$ and $Q(x, y)$ be functions of two variables whose first partial derivatives are continuous in an open rectangle H of the x, y - plane. Consider an arc (curve) C in H whose parametric equations are

$$
x=f(t) \quad y=g(t) \quad a \leq t \leq b
$$

and are such that as t increases from a to b, the corresponding point $(f(t), g(t))$, traces the arc C from the point $A=(f(a), g(a))$ to the point $B=(f(b), g(b))$. Let f^{\prime} and g^{\prime} be continuous for $a \leq t \leq b$.
Then

$$
\int_{C} P(x, y) d x+Q(x, y) d y=\int_{a}^{b}\left\{P(f(t), g(t)) f^{\prime}(t)+Q(f(t), g(t)) g^{\prime}(t)\right\} d t
$$

is called the line integral of $P(x, y) d x+Q(x, y) d y$ along C from A to B.
Remark: Notice that the right hand side above is an ordinary definite integral.

Example: Evaluate the line integral

$$
\int_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y
$$

along the curve C whose parametric equations are

$$
x=t^{2} ; \quad y=t^{3} ; \quad 0 \leq t \leq \frac{3}{2}
$$

Solution: $f(t)=t^{2}$ and $g(t)=t^{2} . \Rightarrow f^{\prime}=2 t$ and $g^{\prime}=3 t^{2}$.

$$
\begin{aligned}
\int_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y & =\int_{0}^{\frac{3}{2}}\left[\left(t^{4}-t^{6}\right)(2 t)+2 t^{2} t^{3}\left(3 t^{2}\right)\right] d t \\
& =\int_{0}^{\frac{3}{2}}\left[\left(2 t^{5}+4 t^{7}\right) d t=\frac{8505}{512}\right.
\end{aligned}
$$

Remark: C may be described vectorially via

$$
\Rightarrow \quad \begin{aligned}
\vec{r}(t) & =f(t) \vec{i}+g(t) \vec{j} \\
\vec{r}^{\prime}(t) & =f^{\prime}(t) \vec{i}+g^{\prime}(t) \vec{j}
\end{aligned}
$$

If we let

$$
\vec{F}(x, y)=P(x, y) \vec{i}+Q(x, y) \vec{j},
$$

then

$$
\begin{gathered}
\vec{F}(t)=\vec{F}(f(t), g(t))=P(f(t), g(t)) \vec{i}+Q(f(t), g(t)) \vec{j} \\
\Rightarrow \quad \vec{F}(f(t), g(t)) \cdot \vec{r}^{\prime}(t)=P(f(t), g(t)) f^{\prime}(t)+Q(f(t), g(t)) g^{\prime}(t)
\end{gathered}
$$

Hence

$$
\int_{C}[P(x, y) d x+Q(x, y) d y]=\int_{a}^{b} \vec{F}(f(t)) \cdot \underbrace{\vec{r}^{\prime}(t) d t}_{d \vec{r}}=\int_{C} \vec{F} \cdot d \vec{r}
$$

Remark: The results we have given for two dimensions readily go over to three dimensions. We define the three dimensional line integral as follows:

The curve may be described in three dimensions via

$$
x=f(t) ; \quad y=g(t) ; \quad z=h(t)
$$

or

$$
\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}
$$

If

$$
\vec{F}(x, y, z)=P(x, y, z) \vec{i}+Q(x, y, z) \vec{j}+R(x, y, z) \vec{k}
$$

then

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{C} P d x+Q d y+R d z=\int_{a}^{b} \vec{F}(f(t), g(t), h(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{a}^{b}\left\{P(f(t), g(t), h(t)) f^{\prime}(t)+Q(f(t), g(t), h(t)) g^{\prime}(t)+R(f(t), g(t), h(t)) h^{\prime}(t)\right\} d t
\end{aligned}
$$

Example: Compute $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=x y \vec{i}+x z \vec{j}-y \vec{k}$ and C is the directed line segment C_{1} from $(1,0,0)$ to $(0,1,0)$ followed by C_{2} which is the segment from $(0,1,0)$ to $(0,1,1)$.

lin2.pex

lin1.pex

Solution: On $C_{1} \quad z=0$

$$
y=-x+1 \quad \text { or } x=1-y
$$

Let $y=t \quad x=1-t \quad 0 \leq t \leq 1$

$$
\begin{gathered}
\vec{r}(t)=(1-t) \vec{i}+t \vec{j}+0 \cdot \vec{k} \Rightarrow \vec{r}^{\prime}(t)=-\vec{i}+\vec{j} \\
\vec{F}=x y \vec{i}+x z \vec{j}-y \vec{k} \Rightarrow \vec{F}(t)=(1-t) t \vec{i}+0 \vec{j}-t \vec{k} \\
\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{0}^{1} \vec{F}(t) \cdot r^{\prime}(t) d t=\int_{0}^{1}\left[t^{2}-t\right] d t=-\frac{1}{6}
\end{gathered}
$$

On $C_{2} \quad x=0, \quad y=1, \quad z$ goes from 0 to1
Let $z=t \quad 0 \leq t \leq 1 \quad \Rightarrow \vec{r}(t)=0 \vec{i}+\vec{j}+t \vec{k} ; \quad \vec{F}=0 \vec{i}+0 \vec{j}-\vec{k}$ and $\vec{r}^{\prime}(t)=\vec{k}$

$$
\int_{C_{2}}=\int_{0}^{1}-d t=-1 .
$$

\Rightarrow

$$
\int_{C}=\int_{C_{1}}+\int_{C_{2}}=-\frac{1}{6}-1=-\frac{7}{6}
$$

$\int_{C} f d s$

Two Dimensions

Let C denote a plane curve given by the parametric equations

$$
x=x(t) \quad y=y(t) \quad a \leq t \leq b
$$

or equivalently by the vector equation $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$. Assume the curve is smooth, which means that the tangent vector $\mathbf{r}^{\prime}=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}$ is continuous and never the zero vector. Let $f(x, y)$ be a function defined at each point of the curve C. The line integral of f along C is defined by the formula

$$
\int_{C} f(x, y) d s=\lim _{\|P\| \rightarrow 0} \sum_{i=1} f\left(x_{i}, y_{i}\right) \Delta s_{i}
$$

In this formula s denotes arc length along the curve, P denotes a partition of the curve into n pieces, and $\|P\|$ is the length of the longest piece. (x_{i}, y_{i}) is a point on the $i^{t h}$ piece. (The definition of an ordinary integral $\int_{a}^{b} g(x) d x$ is defined by a special case of this process, in which the curve C is the segment of the x-axis between a and b.) In practice, this limiting process is rarely carried out, since

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \frac{d s}{d t} d t
$$

and the integral on the right is an ordinary integral. Recall that $d s=\sqrt{d x^{2}+d y^{2}}$ and hence

$$
\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

Thus

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example Evaluate

$$
\int_{C}\left(2+x^{2} y\right) d s
$$

where C is the upper half of the unit circle $x^{2}+y^{2}=1$.

Solution: We parametrize the upper half of the unit circle using

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq \pi
$$

Then

$$
\begin{aligned}
\int_{C}\left(2+x^{2} y\right) d s & =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) \sqrt{\sin ^{2} t+\cos ^{2} t} d t \\
& =\int_{0}^{\pi}\left(2+\cos ^{2} t \sin t\right) d t=\left[2 t-\frac{\cos ^{3} t}{3}\right]_{0}^{\pi} \\
& =2 \pi+\frac{2}{3}
\end{aligned}
$$

Three Dimensions

Let C denote a space curve given by the parametric equations

$$
x=x(t) \quad y=y(t) \quad z=z(t) \quad a \leq t \leq b
$$

or equivalently by the vector equation $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$. Assume the curve is smooth, which means that the tangent vector $\mathbf{r}^{\prime}=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}+\frac{d z}{d t} \mathbf{j}$ is continuous and never the zero vector. Let $f(x, y, z)$ be a function defined at each point of the curve C. The line integral of f along C is defined by the formula

$$
\int_{C} f(x, y, z) d s=\lim _{\|P\| \rightarrow 0} \sum_{i=1} f\left(x_{i}, y_{i}, z_{i}\right) \Delta s_{i}
$$

Here, s denotes arc length along the curve, P denotes a partition of the curve into n pieces, and $\|P\|$ is the length of the longest piece. The point $\left(x_{i}, y_{i}, z_{i}\right)$ is a point on the $i^{\text {th }}$ piece. In practice, this limiting process is rarely carried out, since

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \frac{d s}{d t} d t
$$

and the integral on the right is an ordinary integral. In this case $d s=\sqrt{d x^{2}+d y^{2}+d z^{2}}$ and therefore

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Example

Evaluate

$$
\int_{C} y \sin z d s
$$

where C is the circular helix given by the equations

$$
x=\cos t, y=\sin t z=t \quad 0 \leq t \leq 2 \pi
$$

Solution:

$$
\begin{aligned}
\int_{C} y \sin z d s & =\int_{0}^{2 \pi}(\sin t) \sin t \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sin ^{2} t \sqrt{\sin ^{2} t+\cos ^{2} t+1} d t \\
& =\frac{\sqrt{2}}{2} \int_{0}^{2 \pi}(1-\cos 2 t) d t \\
& =\frac{\sqrt{2}}{2}\left[t-\frac{\sin 2 t}{2}\right]_{0}^{2 \pi}=\sqrt{2} \pi
\end{aligned}
$$

Path Independence

Find the value of

$$
\int_{C} y^{2} d x+(x-y) d y
$$

from the point $A=(0,-2)$ to the point $B=(28,6)$
(a) along the path $x=t^{3}+1 ; \quad y=2 t ; \quad-1 \leq t \leq 3$;
(b) along the straight line segment $A B$

Solution:
(a) first $x=t^{3}+1 \quad y=2 t \Rightarrow x=\frac{y^{3}}{8}+1$ or $y^{3}=8 x-8$

$$
\begin{gathered}
\vec{F}(x, y)=y^{2} \vec{i}+(x-y) \vec{j} \quad \vec{r}=\left(t^{3}+1\right) \vec{i}+2 t \vec{j} \\
\vec{F}(t)=(2 t)^{2} \vec{i}+\left(t^{3}+1-2 t\right) \vec{j} \quad \vec{r}^{\prime}(t)=3 t^{2} \vec{i}+2 \vec{j} \\
\int_{C}=\int_{-1}^{3}\left\{(2 t)^{2} \cdot\left(3 t^{2}\right)+\left(t^{3}-2 t+1\right) \cdot 2\right\} d t=\frac{12 t^{5}}{5}+\frac{2 t^{4}}{4}-\frac{4 t^{2}}{2}+\left.2 t\right|_{-1} ^{3}=\frac{3088}{5}
\end{gathered}
$$

Along path (b): Line goes from $(0,-2)$ to $(28,6)$
\Rightarrow slope $m=\frac{6+2}{28}=\frac{2}{7} \Rightarrow y+2=\frac{2}{7} x$ or $y=\frac{2}{7} x-2$
Let $x=\frac{7}{2} t \Rightarrow y=t-2 \quad 0 \leq t \leq 8$

$$
\begin{gathered}
\vec{F}(t)=(t-2)^{2} \vec{i}+\left(\frac{7}{2} t-t+2\right) \vec{j}=(t-2)^{2} \vec{i}+\left(\frac{5}{2} t+2\right) \vec{j} \\
\vec{r}(t)=\frac{7}{2} t \vec{i}+(t-2) \vec{j} \Rightarrow \vec{r}^{\prime}(t)=\frac{7}{2} \vec{i}+\vec{j} \\
\int_{C}=\int_{0}^{8}\left\{\frac{7}{2}(t-2)^{2}+\frac{5}{2}(t+2)\right\} d t=\frac{1072}{3}
\end{gathered}
$$

Notice that the two paths give two different results.
Often one must consider situations in which the path C is a closed curve. Hence the starting point A and ending point B are the same. This is usually written as

$$
\oint_{C} \vec{F} \cdot d \vec{r}
$$

For plane curves we take the positive direction of C so that the interior of the closed curve is always to the left as C is traversed.

lin3.pex

Example: Show that

$$
\oint_{C} \frac{x d y-y d x}{x^{2}+y^{2}}=2 \pi,
$$

where C is the circle $x^{2}+y^{2}=a^{2}$
Solution: Let $x=a \cos t \quad y=a \sin t \quad 0 \leq t \leq 2 \pi$

$$
\begin{aligned}
\oint_{C} & =\int_{0}^{2 \pi}\left\{\frac{a \cos t(a \cos t)-a \sin t(-a \sin t)}{a^{2}}\right\} d t \\
& =\int_{0}^{2 \pi}\left\{\cos ^{2} t+\sin ^{2} t\right\} d t=\int_{0}^{2 \pi} d t=2 \pi
\end{aligned}
$$

We have seen that the value of a line integral depends on the integrand, the endpoints A and B, and the arc C from A to B. However, certain line integrals depend only on the integrand and endpoints A and B. Such integrals are called path independent or are said to be independent of the path.

Example: Show that the value of the integral

$$
\int_{C}\left(3 x^{2}-6 x y\right) d x+\left(-3 x^{2}+4 y+1\right) d y
$$

is independent of the path taken from $(-1,2)$ to $(4,3)$.
Solution: Here $P=3 x^{2}-6 x y \quad Q=-3 x^{2}+4 y+1$
Suppose we could find a function $G(x, y)$ such that

$$
G_{x}=P \quad G_{y}=Q
$$

Then

$$
\int_{C} P d x+Q d y=\int_{C} G_{x} d x+G_{y} d y=\int_{C} d G=G(4,3)-G(-1,2)
$$

which is a number independent of the path C.
This means that we want $P d x+Q d y$ to be an exact differential. The condition for this is

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Here $P_{y}=-6 x=Q_{x} \Rightarrow$ such a G exists. Now

$$
\begin{array}{cc}
& G_{x}=P=3 x^{2}-6 x y \\
\Rightarrow & G=x^{3}-3 x^{2} y+g(y)
\end{array}
$$

where $g(y)$ is a function of y.
But

$$
G_{y}=-3 x^{2}+g^{\prime}(y)=Q=-3 x^{2}+4 y+1
$$

\Rightarrow

$$
g^{\prime}(y)=4 y+1 \quad \text { or } \quad g(y)=2 y^{2}+y+K
$$

Thus

$$
G(x, y)=x^{3}-3 x^{2} y+2 y^{2}+y+K
$$

where C is a constant. Then $G(4,3)=-59+K$ and $G(-1,2)=3+K$
Thus

$$
\int_{C}\left(3 x^{2}-6 x y\right) d x+\left(-3 x^{2}+4 y+1\right) d y=-59+K-3-K=-62
$$

We may summarize the above as follows:

Let $P(x, y) d x+Q(x, y) d y$ be an exact differential of some function G in an open rectangular region H. If C is an arc lying entirely in H with parametric equations

$$
x=f(t) \quad y=g(t) \quad a \leq t \leq b
$$

and f^{\prime} and g^{\prime} are continuous, then

$$
\int_{C} P(x, y) d x+Q(x, y) d y=G(f(b), g(b))-G(f(a), g(a))
$$

where $(f(a), g(a))$ and $(f(b), g(b))$ are the endpoints of C.
Remark: If a line integral is path independent one may choose a path along which it is easy to evaluate the line
integral.
Example: $\int_{C}\left(3 x^{2}-6 x y\right) d x+\left(-3 x^{2}+4 y+1\right) d y$ from $\left.(-1,2)\right)$ to $(4,3)$. (This is the same example we dealt with above.)

Note that $d y=0$ and $y=2$ on C_{1} and $d x=0$ and $x=4$ on $C_{2} \Rightarrow$

$$
\int_{C}=\int_{-1}^{4}\left(3 x^{2}-6 x y\right) d x+\int_{2}^{3}\left(-3 x^{2}+4 y+1\right) d y
$$

But $y=2$ in the first integral whereas $x=4$ in the second \Rightarrow
$\int_{C}=\int_{-1}^{4}\left(3 x^{2}-12 x\right) d x+\int_{2}^{3}(4 y-47) d y=-62$
Remark: Recall that

$$
\nabla G=G_{x} \vec{i}+G_{y} \vec{j}
$$

Also $d \vec{r}=d x \vec{i}+d y \vec{j} \quad \Rightarrow$

$$
\nabla G \cdot d \vec{r}=G_{x} d x+G_{y} d y
$$

Therefore if $P d x+Q d y$ is an exact differential, then

$$
\int_{C} P d x+Q d y=\int_{C} \nabla G(x, y) \cdot d \vec{r}
$$

Remarks:
(1) The fact that a line integral is independent of path is equivalent to the statement that the line integral around any closed path is zero. To see this let C be any closed path and $P_{0} \neq P_{1}$ be points on C.

lin5.pex

Then $C=C_{1}+C_{2}$. If the line integral is path independent \Rightarrow

$$
\begin{aligned}
\int_{C_{1}} \vec{F} \cdot d \vec{r} & =\int_{-C_{2}} \vec{F} \cdot d \vec{r} \\
\text { Thus } \int_{C_{1}} \vec{F} \cdot d \vec{r}-\int_{-C_{2}} \vec{F} \cdot d \vec{r} & =0
\end{aligned}
$$

But $-d \vec{r}$ along $-C_{2}$ is equivalent to $d \vec{r}$ along C_{2}. Therefore

$$
\int_{C_{1}} \vec{F} \cdot d \vec{r}+\int_{C_{2}} \vec{F} \cdot d \vec{r}=\oint_{C} \vec{F} \cdot d \vec{r}=0
$$

Suppose now that

$$
\oint_{C} \vec{F} \cdot d \vec{r}=0
$$

for any closed path C.
Let P_{0} and P_{1} be any two points on C and C_{1} and C_{2} any two paths joining them.

lin6.pex

Then $C=C_{1}+\left(-C_{2}\right)$ is a closed path and

$$
\begin{gathered}
\oint_{C} \vec{F} \cdot d \vec{r}=\int_{C_{1}-C_{2}} \vec{F} \cdot d \vec{r}=0 \\
\Rightarrow \quad \int_{C_{1}} \vec{F} \cdot d \vec{r}+\int_{-_{2}} \vec{F} \cdot d \vec{r}=0 \text { or } \int_{C_{1}} \vec{F} \cdot d \vec{r}=-\int_{-C_{2}} \vec{F} \cdot d \vec{r}=\int_{C_{2}} \vec{F} \cdot d \vec{r}
\end{gathered}
$$

Hence the following are equivalent:
$\int_{C} \vec{F} \cdot d \vec{r}$ is path independent \leftrightarrow there exists a G such that $\vec{F}=\nabla G$

$$
\leftrightarrow \oint_{C} \vec{F} \cdot d \vec{r}=0 \text { for any closed path } C
$$

We have discussed path independence in two dimensions. Similar things hold in three dimensions.

Example: If $\vec{F}=y \vec{i}-z \vec{j}+x \vec{k}$ is $\int_{C} \vec{F} \cdot d \vec{r}$ path independent?
Solution: The line integral is path independent \Leftrightarrow there exists a function $\phi(x, y, z)$ such that $\nabla \phi=\vec{F}$. Suppose such a ϕ exists.
\Rightarrow

$$
\phi_{x}=y ; \quad \phi_{y}=-z ; \quad \phi_{z}=x
$$

Now $\phi_{z}=x \Rightarrow \phi(x, y, z)=x z+g(x, y)$ But $\quad \phi_{x}=z+\frac{\partial g}{\partial x}=y$

$$
\Rightarrow
$$

$$
z=y-\frac{\partial g}{\partial x}(x, y)
$$

But z is an independent variable and therefore not dependent upon x and y. Thus no such ϕ can exist $\Rightarrow \int_{C} \vec{F} \cdot d \vec{r}$ is path dependent for this \vec{F}.
Question: When does there exist a $\phi(x, y, z)$ such that $\nabla \phi=\vec{F}$?
Theorem: Suppose \vec{F} is a continuously differentiable function in a region D in space and that

$$
\operatorname{curl} \vec{F}=0 \text { in } D
$$

Then there exists a continuously differentiable, scalar function $\phi(x, y, z)$, in D such that

$$
\vec{F}=\nabla \phi
$$

Remark: $C: \vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k} \quad a \leq t \leq b . \vec{F}$ force on a particle.
Then

$$
\text { Work }=\int_{C} \vec{F} \cdot d \vec{r}
$$

Example It can be shown that for the vector field

$$
\begin{gathered}
\vec{F}(x, y, z)=y z(2 x+y) \vec{i}+x z(x+2 y) \vec{j}+x y(x+y) \vec{k} \\
\text { curl } \vec{F}=\nabla \times \vec{F}=0
\end{gathered}
$$

Evaluate

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

where C is the curve given by the vector equation

$$
\vec{r}(t)=(1+t) \vec{i}+\left(1+2 t^{2}\right) \vec{j}+\left(1+3 t^{2}\right) \vec{k} \quad 0 \leq t \leq 1
$$

Solution:
Check (not required)

$$
\begin{aligned}
& \nabla \times(y z(2 x+y), x z(x+2 y), x y(x+y)) \\
= & (x(x+y)+x y-x(x+2 y), y(2 x+y)-y(x+y)-x y, z(x+2 y)+x z-z(2 x+y)-y z) \\
= & (0,0,0)
\end{aligned}
$$

Thus there exists $f(x, y, z)$ such that $\operatorname{gradf}=\vec{F}$.

$$
f_{x}=y z(2 x+y)
$$

so

$$
f=x^{2} y z+x y^{2} z+g(y, z)
$$

Then

$$
f_{y}=x^{2} z+2 x y z+g_{y}=x z(x+2 y)
$$

Therefore $g_{y}=0$, so $g=h(z)$ and

$$
f=x^{2} y z+x y^{2} z+h(z)
$$

Also

$$
f_{z}=x^{2} y+x y^{2}+h^{\prime}(z)=x y(x+y)
$$

so $h^{\prime}(z)=0$. Thus

$$
\begin{aligned}
f(x, y, z) & =x^{2} y z+x y^{2} z+K \\
\vec{r}(0) & =\vec{i}+\vec{j}+\vec{k} \\
\vec{r}(1) & =2 \vec{i}+3 \vec{j}+4 \vec{k}
\end{aligned}
$$

$$
\int_{C} \vec{F} \cdot d \vec{r}=f(2,3,4)-f(1,1,1)=118
$$

Green's Theorem

There is a remarkable theorem that identifies a double integral over a region R with a line integral around its boundary. It is known as Green's Theorem.

Theorem: Let $P(x, y)$ and $Q(x, y)$ be functions of two variables which are continuous and have continuous first partial derivatives in some rectangular region H in the x, y - plane. If C is a simple, closed, piecewise smooth curve lying entirely in H, and if R is the bounded region enclosed by C, then

$$
\oint_{C}\{P(x, y) d x+Q(x, y) d y\}=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Corollary: Let R be a bounded region in the x, y - plane. Then the area of R is given by

$$
A=\frac{1}{2} \oint_{C}(x d y-y d x)
$$

where C is the boundary of R
Proof: Let $P=-\frac{y}{2}$ and $Q=\frac{x}{2}$ in Green's Theorem. \Rightarrow

$$
\oint_{C}\left(\frac{-y}{2} d x+\frac{x}{2} d y\right)=\iint_{R}\left(\frac{1}{2}-\left[-\frac{1}{2}\right]\right) d A=\iint_{R} d A=\text { area of } R
$$

Example: Find the area of the region bounded by the curves $y=x^{3}$ and $y=x^{\frac{1}{2}}$

Let $C=C_{1}+C_{2}$, where $C_{2}: y=x^{\frac{1}{2}} x: 1 \rightarrow 0$ and $C_{1}: y=x^{3} 0 \leq x \leq 1$. Then C is a closed curve which bounds the region. We shall use x as the parameter on C and the formula in the corollary. \Rightarrow

$$
\begin{aligned}
A & =\frac{1}{2} \oint_{C}(x d y-y d x) \\
& =\frac{1}{2} \int_{C_{1}}\left[x\left(3 x^{2}\right) d x-x^{3} d x\right]+\frac{1}{2} \int_{C_{2}}\left[x\left(\frac{1}{2} x^{-\frac{1}{2}}\right) d x-x^{\frac{1}{2}} d x\right] \\
& =\frac{1}{2} \int_{0}^{1} 2 x^{3} d x-\frac{1}{4} \int_{1}^{0} x^{\frac{1}{2}} d x=\frac{5}{12}
\end{aligned}
$$

Example: Evaluate the line integral

$$
\oint_{C}\left(x^{3}+2 y\right) d x+\left(4 x-3 y^{2}\right) d y
$$

where C is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Solution: $P=x^{3}+2 y, \quad Q=4 x-3 y^{2} \Rightarrow Q_{x}=4, \quad P_{y}=2$
By Green's Theorem:

$$
\oint_{C} P d x+Q d y=\iint_{R}(4-2) d A=2 \iint d A
$$

Therefore we need the area of the ellipse which is $\pi a b . \Rightarrow \oint=2 \pi a b$.
Example. Verify Green's theorem for

$$
\oint_{C} 3 x y d x+2 x^{2} d y
$$

where C is the curve which bounds the region R above by $y=x$ and below by $y=x^{2}-2 x$

Since $P=3 x y$ and $Q=2 x^{2}$, we see that $Q_{x}-P_{y}=4 x-3 x=x$. The curves intersect when $x=x^{2}-2 x$ or $x^{2}-3 x=x(x-3)=0$. Hence when $x=0,3$. Thus

$$
\iint\left(Q_{x}-P_{y}\right) d A=\int_{0}^{3} \int_{x^{2}-2 x}^{x} x d y d x=\frac{27}{4}
$$

$C=C_{1}+C_{2}$ where $C_{1}: y=x^{2}-2 x$
$C_{2}: y=x \quad 0 \leq x \leq 3$
On C_{1} :

$$
\int_{C_{1}} P d x+Q d y=\int_{0}^{3} 3 x\left(x^{2}-2 x\right) d x+\int_{0}^{3} 2 x^{2}(2 x-2) d x
$$

On C_{2} :

$$
\int_{C_{2}} P d x+Q d y=\int_{3}^{0} 3 x(x) d x+\int_{3}^{0} 2 x^{2} d x
$$

A straight forward calculation shows that the sum of these last two expressions also equals $\frac{27}{4}$.
Example. Use Green's theorem to evaluate

$$
\int_{C}\left(2 y+\sqrt{9+x^{3}}\right) d x+\left(5 x+e^{\arctan y}\right) d y
$$

where C is the circle $x^{2}+y^{2}=4$.
Now $Q_{x}-P_{y}=5-2=3 . \Rightarrow$

$$
\left.\iint_{x^{2}+y^{2} \leq 4} 3 d A=3 \text { (area of a circle of radius } 2\right)=3(4 \pi)=12 \pi
$$

Example Evaluate

$$
\oint_{C}(1+\tan x) d x+\left(x^{2}+e^{y}\right) d y
$$

Where C is the positively oriented boundary of the region R enclosed by the curves $y=\sqrt{x}, x=1$, and $y=0$. Be sure to sketch C.
Solution:
The region enclosed by C is shown below.

We use Green's Theorem to evaluate the integral since C is a closed curve.

$$
\begin{aligned}
\oint_{C}(1+\tan x) d x+\left(x^{2}+e^{y}\right) d y & =\iint_{R}\left(\frac{\partial\left(x^{2}+e^{y}\right)}{\partial x}-\frac{\partial(1+\tan x)}{\partial y}\right) d A \\
& =\int_{0}^{1} \int_{0}^{\sqrt{x}}(2 x-0) d y d x=2 \int_{0}^{1} x^{\frac{3}{2}} d x=\frac{4}{5}
\end{aligned}
$$

