Ma 227 Line Integrals

Definition. Let P(x,y) and Q(x,y) be functions of two variables whose first partial derivatives are continuous in an
open rectangle H of the x,y — plane. Consider an arc (curve) C in H whose parametric equations are

x=f(t) y=9gt) a<t<b
and are such that as t increases from a to b, the corresponding point (f(t), g(t)), traces the arc C from the point
A = (f(a),g(a)) to the point B = (f(b),g(b)). Let f' and g’ be continuous fora <t < h.
Then
b
J . Pocy)dx+ Queyydy = [ (P, g0 © + QU g0)g ()t

is called the line integral of P(x,y)dx + Q(x,y)dy along C from A to B.
Remark: Notice that the right hand side above is an ordinary definite integral.

Example: Evaluate the line integral
IC (x2 — y2)dx + 2xydy

along the curve C whose parametric equations are
Solution: f(t) = t? and g(t) = t>. => f' = 2tand g’ = 3t2.

jc(x2 —y2)dx + 2xydy = j f[(t4 ~t8)(2t) + 2t23(3t2)]dt

3
— (21215 + at7)gt = 8505
_jo [(2t5 + 4tTyat = 85

Remark: C may be described vectorially via

T = f)T +91)]

T'M) =T +g'®]
If we let
Fy) = PO T +Q(Y)T,
then

Ft) = F(fD,9(t) = P(®),9))T + Q(f(t), g() |

F((),9(h) «7'(1) = PAD, g®)F (1) + QD). g(1)g' (1)



Hence

j [P(x,y)dx + Q(x,y)dy] = jbl_:’(f(t))-?'(t)dt = f F.dr
c a — °C
dr

Remark: The results we have given for two dimensions readily go over to three dimensions. We define the three
dimensional line integral as follows:

The curve may be described in three dimensions via

x="1(1t); y=9®; z=nh()

or
M) = (0T +9®] +h®K
If
E(x,y, 2) = P(x,y, Z)T +QWX,Y, Z)T +R(x,Y, z)?
then

j F.dP = j Pdx + Qdy + Rdz = jbﬁ(f(t),g(t),h(t)) ST (0)dt
C C a

= j:{P(f(t). g(®), h()F' (V) + Qf(V), 9(1), h(H)g' (V) + R(F(L), g(V), h(H)h' (1) }dt

Example: Compute fc F.dPwhere F = xyT + sz - y? and C is the directed line segment C; from (1,0,0) to
(0,1,0) followed by C, which is the segment from (0, 1,0) to (0,1,1).
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Solution: On C; z=0

y=-x+1 orx=1-y
Lety=t x=1-t 0<t<l1

-
—1

PM) = (L-07T+t]+0-K=>T'(® =T+

¥

—

F-= Xyi +sz—y?:> I?(t) = (1—t)t_i)+OT—tE)

= _ 1 | _ 1 2_ __l
IC1F d?—IOF(t) r(t)dt_jo[t t]dt = 3
OnC; X =0, y =1, z goes from 0 tol

Letz=t O0<t<l =TPO=0i+j+tk; F=07+0j-KandT?'(t) =K

J  fds

Two Dimensions
Let C denote a plane curve given by the parametric equations

Xx=x@1t) y=y@) ast<b
or equivalently by the vector equation r(t) = x(t)i + y(t)j. Assume the curve is smooth, which means that the
tangent vector r/ = %i + %j is continuous and never the zero vector. Let f(x,y) be a function defined at each
point of the curve C. The line integral of f along C is defined by the formula



I f(x,y)ds = ”|Iﬁn Zl:f(xi,yi)Asi

In this formula s denotes arc length along the curve, P denotes a partition of the curve into n pieces, and ||P ||is
the length of the longest piece. (xi,yi) is a point on the i™" piece. (The definition of an ordinary integral Ia g(x)dx

is defined by a special case of this process, in which the curve C is the segment of the x-axis between a and b.) In
practice, this limiting process is rarely carried out, since

[_foypds = [ fo.yw) St
and the integral on the right is an ordinary integral. Recall that ds = /dx? + dy? and hence

- (&) (%)
J_fouyds - I:f(x(t),y(t))‘/ %)2 + (%)2 dt

I (2 + x2y)ds
C

where C is the upper half of the unit circle x? + y? =

Thus

Example Evaluate

Solution: We parametrize the upper half of the unit circle using
Xx=cost y=sint 0<t<nr

Then

2
I (2 +x?y)ds ,J (2+coszt3|nt)J dt) +<%> dt
= IO(Z + cos?tsint) /sin?t + cos2t dt

_[" 2si _ [ot_ cos®t 1"
= IO(Z + cos4tsint)dt = [Zt 3 L
=2+ %
Three Dimensions
Let C denote a space curve given by the parametric equations

X = X(t) y =y() z=121) ast<b
or equivalently by the vector equation r(t) = x()i+y(t)j + z(t)k. Assume the curve is smooth, which means that
the tangent vector r/ = i + d—j + tj is continuous and never the zero vector. Let f(X,y,z) be a function
defined at each point of the curve C. The line integral of f along C is defined by the formula

I f(x,y,z)ds = ||Ilﬁn Zlf(xi,yi,zi)Asi.

Here, s denotes arc length along the curve, P denotes a partition of the curve into n pieces, and ||P | is the length
of the longest piece. The point (xi,Yi,zi) is a point on the i™" piece. In practice, this limiting process is rarely
carried out, since

J_toxy.2xds =[xy, 20) Lt
and the integral on the right is an ordinary integral. In this case ds = ,/dxz + dy? + dz? and therefore



jc f(x,y,z)ds = I:f(x(t),y(t),z(t))‘/<%>2 ; (%)2 . (%)2 it

Example
Evaluate

sinzds

Joy

where C is the circular helix given by the equations
x=cost,y=sintz=t0<t<2r

Solution:

IC ysinzds = Isﬂ(sint)sint‘/<%>2 ¥ (%)2 n (%)2 dt
= Iz” sin®ty/sin®t + cos?t + 1 dt

2
= @ IO (1 —cos2t)dt

L2 -

Path Independence

Find the value of

[ y2ax+ (- y)dy
C
from the point A = (0,-2) to the point B = (28, 6)

(a) along the path x = t3 + 1; y = 2t; -1<t<3;
(b) along the straight line segment AB
Solution:

() firstx = t3 + 1 y=2t:>x=§+1ory3=8x—8

Fiy) =y2T+(x-y)] T=@+1)T+2t]

F) = @027+ +1-20)] Tt =327 +2]

3
[ =] (@ -aty s @ -2 2= 120 20 A o3, = 3088

Along path (b ): Line goes from (0,-2) to (28,6)

=>slopem = &2 = 2 5y+2 = Zxory = £x-2

Letx=Lt=y=t-2 0<t<8



Ft) = t-2)27 + (%t—t+ 2>T = (t-2)27 + (%t+ 2>T

i j

() = %tl +t-2)] T M = %‘i’+

J.C - jj{%(t— 2)2 + %(t+2)}dt = %

Notice that the two paths give two different results.

Often one must consider situations in which the path C is a closed curve. Hence the starting point A and ending
point B are the same. This is usually written as

j?cl‘:’-d—r’.

For plane curves we take the positive direction of C so that the interior of the closed curve is always to the left as
C is traversed.

lind.pcx

Example: Show that
xdy-ydx
c Xx2+y?
where C is the circle x2 + y2 = a2

Solution: Letx = acost y=asint 0<t<2r

§ _ J‘Zﬂ{ acost(acost) — asint(-asint) }dt
c 0 a2

= J.Zﬂ{coszt +sin?t}dt = J.Z” dt = 27
0 0

We have seen that the value of a line integral depends on the integrand, the endpoints A and B, and the arc C from
A to B. However, certain line integrals depend only on the integrand and endpoints A and B. Such integrals are
called path independent or are said to be independent of the path.



Example: Show that the value of the integral

jc(3x2 — 6xy)dx + (=3x2 + 4y + 1)dy

is independent of the path taken from (-1, 2) to (4, 3).
Solution: Here P = 3x2 —6xy Q= -3x2+4y+1
Suppose we could find a function G(x,y) such that

Then
j Pdx + Qdy = j GxdX + Gydy = j dG = G(4,3) - G(-1,2).
C C C

which is a number independent of the path C.
This means that we want P dx + Q dy to be an exact differential. The condition for this is

P _ R

oy ox
Here Py = —6x = Qx = such a G exists. Now

Gx = P = 3x2 - 6xy

G = x3-3x%y +g(y)
where g(y) is a function of y.

But

Gy =-3x*+0'(y) =Q =-3x>+4y+1
=

g'(y) =4y+1 or gy) =2y>+y+K
Thus

G(x,y) = x3 = 3x2y +2y2 +y + K
whereC is a constant. Then G(4,3) = — 59+ Kand G(-1,2) = 3+K
Thus

IC(BXZ —6xy)dx + (=3x% +4y + 1)dy = 59 + K- 3 - K = —62

We may summarize the above as follows:

Let P(x,y)dx + Q(X,y)dy be an exact differential of some function G in an open rectangular region H. If C is an
arc lying entirely in H with parametric equations

x = f(t) y =g(t) a<st<hb
and f' and g’ are continuous, then

IC P(x,y)dx+Q(x,y)dy = G(f(b),g(b)) - G(f(a),g(a))

where (f(a),g(a)) and (f(b),g(b)) are the endpoints of C.
Remark: If a line integral is path independent one may choose a path along which it is easy to evaluate the line



integral.

Example: jc (3x? — Bxy)dx + (=3x2 + 4y + 1)dy from (-1, 2)) to (4,3). (This is the same example we dealt with
above.)

Y
]
(4,3)
19 C, C,
2] " (4,2)
- H4
lind_pcx

Je =l

Note thatdy = 0andy =2onCj;anddx = 0andx = 4 onC; >

3
j - r (3x2 — 6xy)dx + j (=3x2 + 4y + 1)dy
C -1 2

Buty = 2 in the first integral whereas x = 4 in the second=

[ =13 —120dx+ [ (dy - 47)dy = 62
Remark: Recall that
- -
VG = Gx I + GyJ
Also d? = dxi +dyj] =
VG « dT = Gydx + Gydy.

Therefore if Pdx + Qdy is an exact differential, then

IC Pdx + Qdy = IC VG(x,y) - dT

Remarks:

(1) The fact that a line integral is independent of path is equivalent to the statement that the line integral around
any closed path is zero. To see this let C be any closed path and Py + P; be points on C.
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o

c 1
Then C = C1 + Cy. If the line integral is path independent =

jC E.d?:j_c F.d7.
ThusjC I_:)-d_r’—jic F.dP =0

But — dT along — C; is equivalent to d7 along C,. Therefore

Suppose now that

for any closed path C.
Let Py and P be any two points on C and C; and C, any two paths joining them.
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C z
£ R
C 1
Then C = C1 + (-C») is a closed path and
§ Fodv- F.d? =0
C C1-Co

I_:)-d_r’+J. F.dP=0 or l_:)-d?z—_[ F.dPr=[ F.d?
C1 -Cz2 Cy -Cy

Hence the following are equivalent:

jcl_f - dT is path independent < there exists a G such that F=VG

o §Cl_f -dT = 0 for any closed path C.
We have discussed path independence in two dimensions. Similar things hold in three dimensions.

Example: If F= yT - ZT +xKis _[CI_:) - dT path independent?

Solution: The line integral is path independent < there exists a function ¢(x,y,z) such that V¢ = F. Suppose such

a ¢ exists.
-
dx =Y, py = -1, ¢z =X
Now ¢; = x = ¢(x,Y,2) = x2+9g(xy) But  ¢x = ”2_3 -y
s

0
z=y- S xY)

10



But z is an independent variable and therefore not dependent upon x and y. Thus no such ¢ can exist = IC E.d?
is path dependent for this F.

Question: When does there exist a ¢(x,y,z) such that V¢ = =

Theorem: Suppose Fisa continuously differentiable function in a region D in space and that

e 4 .
curlF =0 in D
Then there exists a continuously differentiable, scalar function ¢(x,y,z), in D such that
-
F =Vg¢.

Remark: C : T(t) = x(t)T + y(t)T + z(t)? ast<b. F force on a particle.
Then

Work = I F.d7
C
Example It can be shown that for the vector field
l?(x,y, Z) = yz(2x + y)T+ XZ(X + 2y)T+ Xy(X + y)ﬁ
curlF =VxF =0
Evaluate

where C is the curve given by the vector equation
) = Q+t)i+@+22)]+(1+3t2)k 0<t<1
Solution:
Check (not required)
Vx (Yyz(2X +Y),XZ(X + 2y), Xy(X +Y))
= (X(X+Y) +Xy = XX+ 2Y),y(2X+y) —y(X+Y) =Xy, Z(X + 2y) + X2 —2(2X + Y¥) — yZ)
= (0,0,0)
Thus there exists f(x,y,z) such that gradf = F.
fx = yz(2x +y)
SO
f = x2yz +xy?z + g(y,2)
Then
fy = X%z + 2xyz + gy = xz(X + 2y)
Therefore gy = 0, so g = h(z) and
f = x2yz + xy?z + h(z)
Also
f, = X2y +xy?2 +h'(2) = xy(x +y)
soh'(z) = 0. Thus
f(x,y,2) = x2yz + xy?z + K
PO) =1+]+K

P(L) = 21 + 3 + 4k

11



ICE .dr = 1(2,3,4) - f(1,1,1) = 118

Green’s Theorem

There is a remarkable theorem that identifies a double integral over a region R with a line integral around its
boundary. It is known as Green’s Theorem.

Theorem: Let P(x,y) and Q(x,y) be functions of two variables which are continuous and have continuous first
partial derivatives in some rectangular region H in the x,y — plane. If C is a simple, closed, piecewise smooth
curve lying entirely in H, and if R is the bounded region enclosed by C, then

§_ Py Quyy - [ [ (-2 aa

Corollary: Let R be a bounded region in the x,y — plane. Then the area of R is given by

-1 _
= 3 §_ody -ydo

where C is the boundary of R
Proof: Let P = —% and Q = % in Green’s Theorem. =

§ ( Dax+ X dy) II ( [ %])dA:jIRdA:areaofR

Example: Find the area of the region bounded by the curves y = x% and y

LetC = Cy+Cy whereCy 1y =x2x:1->0andCy :y=x30<x < 1. Then Cis aclosed curve which
bounds the region. We shall use x as the parameter on C and the formula in the corollary. =

A= %ﬂ(x dy -y dx)
3 oo 3 [ (oo

1Mo - L [Oxtdx = 5
2JAOZde 4JAlxzdx—12

12



Example: Evaluate the line integral
ff (x3 + 2y)dx + (4x — 3y?)dy
C

2
where C is the ellipse 2—2 + % =1
Solution: P = x3 + 2y, Q =4x-3y? = Qyx = 4, Py =2

By Green’s Theorem:
j}c Pdx + Qdy = HR(4—2)dA - 2”dA

Therefore we need the area of the ellipse which is 7 ab.= ff = 2r ab.
Example. Verify Green’s theorem for
§ 3xydx + 2x2dy
C

where C is the curve which bounds the region R above by y = x and below by y = x? — 2x

0.5 1 l.§ 2 25 3

Since P = 3xy and Q = 2x? , we see that Qx — Py = 4x — 3x = x. The curves intersect when x = x? — 2x or
x2 —3x = X(x— 3) = 0. Hence when x = 0,3.Thus

II(QX —Py)dA = Iz I:z_zx xdydx = %

C=Cy+C, where C; :y=x2-2x Cp:y=x 0<x<3
OnCy:

j Pdx + Qdy = js 3x(x2 — 2x)dx + js 2x2(2x — 2)dx
Ci 0 0

OonC,:
0 0
j Pdx + Qdy = j 3x(xX)dx +.f 2x2dx
C 3 3

A straight forward calculation shows that the sum of these last two expressions also equals %.
Example. Use Green’s theorem to evaluate

jc (2y +49+x3 )dX + (BX + ectany )y

where C is the circle x2 + y2 = 4.



” 3dA = 3(area of a circle of radius 2) = 3(4r) = 12n
X2+y?<4

Example Evaluate
§C(1 +tanx)dx + (x2 + e¥)dy

Where C is the positively oriented boundary of the region R enclosed by the curvesy = /X, x =1, andy = 0. Be
sure to sketch C.

Solution:
The region enclosed by C is shown below.

1.0
y
0.8
0.6
0.4

0.2

0.0 f f f f f f f f f
00 01 02 03 04 05 06 07 08 09 %O

We use Green’s Theorem to evaluate the integral since C is a closed curve.

B ox>+eY)  9(1+tanx)
§C(l +tanx)dx + (x2 + eY)dy = I_[R< = - 5 )dA

- [ ex-odyax -2 [ xtax- 4
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