Ma 227 - MULTIPLE INTEGRATION

Remark: The concept of a function of one variable in which y = g(x) may be extended to two or more variables. If z is uniquely determined by values of the variables x and y, then we say z is a function of x and y, and write z = f(x, y). Thus for each pair of values x and y in the domain of f, f(x, y) gives one value of z.

Double Integrals

Recall that if f(x) > 0 then $\int_{a}^{b} f(x) dx$ represents the area under f between x = a and x = b.

Now consider a function f(x, y) of *two* variables x and y. Then $I = \int \int f(x, y) dA$ denotes the double

integral over the region R of the function f(x, y). Actually when f is positive I is the volume under f which is enclosed by f, its projection R onto the x, y –plane and the "shell of the projection".

If we imagine a grid in the x, y -plane then $\Delta A = \Delta x \Delta y = \Delta y \Delta x$ and $dA = dxdy = dydx \Rightarrow I = \iint_R f(x, y)dxdy = \iint_R f(x, y)dydx.$

If we are given the boundaries of R in terms of y as a function of x, i.e.

Then

$\iint_R f(x, y) dA =$	$\int_{a}^{b} \left[\int_{f_1(x)}^{f_2(x)} f(x, y) dy \right]$	dx.
------------------------	---	-----

On the other hand if we are given the boundaries of R in a form in which x is a function of y as indicated below

Then

$$\iint_{R} f(x,y) dA = \int_{c}^{d} \left[\int_{g_{1}(y)}^{g_{2}(y)} f(x,y) dx \right] dy$$

Evaluate $\iint_R x^2 y^3 dA$ where *R* is the region contained by the lines x = 1, x = 2, y = 2, and y = 3.

We may also calculate the double integral by integrating with respect to y first

$$\iint_{R} x^{2}y^{3}dA = \int_{1}^{2} \int_{2}^{3} x^{2}y^{3}dydx = \int_{1}^{2} x^{2} \left[\int_{2}^{3} y^{3}dy\right]dx = \int_{1}^{2} x^{2} \left[\frac{y^{4}}{4}\right]_{2}^{3}dx$$
$$= \frac{1}{4} \left[3^{4} - 2^{4}\right] \int_{1}^{2} x^{2}dx = \frac{65}{4} \left[\frac{x^{3}}{3}\right]_{1}^{2} = \frac{1}{12} (65)[8 - 1] = \frac{455}{12}$$

Thus $\iint_R x^2 y^3 dy dx = \iint_R x^2 y^3 dx dy$. This is true in general. However, one must make sure that the limits of integration are correct.

Evaluation of Double Integrals

Here are a couple of examples of how one evaluates more complicated double integrals.

Example

Evaluate

$$\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} dx dy$$

$$\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} dx dy = \int_{1}^{\ln 8} \left[\int_{0}^{\ln y} e^{x} dx \right] e^{y} dy = \int_{1}^{\ln 8} \left[e^{x} \right]_{0}^{\ln y} e^{y} dy = \int_{1}^{\ln 8} e^{y} \left[y-1 \right] dy = \int_{1}^{\ln 8} y e^{y} dy - \int_{1}^{\ln 8} e^{y} dy$$

We use integration by parts to evaluate $\int_{1}^{\ln 8} y e^{y} dy$ with u = y and $dv = e^{y} dy$

$$\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} dx dy = [ye^{y}]_{1}^{\ln 8} - \int_{1}^{\ln 8} e^{y} dy - \int_{1}^{\ln 8} e^{y} dy = 8\ln 8 - e - 2e^{y}|_{1}^{\ln 8} = 8\ln 8 - e - 16 + 2e = 8\ln 8 + e - 16.$$

Example

Evaluate

 $\iint_R x^2 y^3 dA$

where *R* is the triangle with vertices at (0,0), (0,1), (1,1).

Solution:

The triangle is shown below.

We will set up the integration in two ways. Consider first

$$\iint_R x^2 y^3 dx dy$$

Taking a horizontal strip parallel to the x –axis we see that x goes from the y –axis to the line x = y, whereas y goes from 0 to 1. Thus

$$\iint_{R} x^{2}y^{3}dxdy = \int_{0}^{1} \int_{0}^{y} x^{2}y^{3}dxdy = \frac{1}{21}$$

If we now consider

$$\iint_R x^2 y^3 dy dx$$

then using a vertical strip parallel to the y –axis we see that y goes from the line y = x to 1. so we have

$$\iint_{R} x^{2} y^{3} dy dx = \int_{0}^{1} \int_{x}^{1} x^{2} y^{3} dy dx = \frac{1}{21}$$

Example

Find the volume of the solid whose base is in the x, y –plane and is the triangle bounded by the x –axis, the line y = x and the line x = 1, while the top of the solid is the plane z = x + y + 1.

$$dV = f(x, y)dA = (x + y + 1)dxdy = (x + y + 1)dydx$$

Thus

$$V = \iint_R (x + y + 1) dA$$

where R is the base of the solid which is shown below.

The boundaries of *R* are y = 0, y = x, and x = 1. Hence

$$V = \int_0^1 \int_0^x (x+y+1) dy dx = \int_0^1 \left[xy + \frac{y^2}{2} + y \right]_0^x dx = \int_0^1 \left[x^2 + \frac{x^2}{2} + x \right] dx$$
$$= \int_0^1 \left(\frac{3}{2} x^2 + x \right) dx = \left[\frac{3}{2} \frac{x^3}{3} + \frac{x^2}{2} \right]_0^1 = \frac{1}{2} + \frac{1}{2} = 1.$$

Note that another expression for the volume is

$$V = \int_{0}^{1} \int_{y}^{1} (x + y + 1) dx dy.$$

Properties of Double Integrals

Double integrals have the same properties as integrals of one variable. For example, if c_1 and c_2 are constants, then

$$\iint_{R} [c_{1}f(x,y) + c_{2}g(x,y)]dA = c_{1} \iint_{R} f(x,y)dA + c_{2} \iint_{R} g(x,y)dA.$$
(1)
$$\int_{-1}^{5} \int_{x-1}^{x} (4xe^{y} - 3y\sin x)dydx = -\frac{1}{2} \left(-32 + 32e^{-1} + 6(\sin 5)e^{-5} - 27(\cos 5)e^{-5} - 16e^{-6} + 16e^{-7} + 6(\sin 1)e^{-5} - 9(\cos 1)e^{-5}\right)$$

whereas

(2)
$$4 \int_{-1}^{5} \int_{x-1}^{x} x e^{y} dy dx = -8 \left(-2 + 2e^{-1} - e^{-6} + e^{-7}\right) e^{5}$$

and

(3)
$$-3\int_{-1}^{5}\int_{x-1}^{x}y\sin xdydx = -3\sin 5 + \frac{27}{2}\cos 5 - 3\sin 1 + \frac{9}{2}\cos 1$$

Adding the results given by (2) and (3) gives (1) after a bit of algebra.

If R is a closed region which can be decomposed into regions R_1 and R_2 and f is continuous over R, then

$$\iint_R f(x,y) dA = \iint_{R_1} f(x,y) dA + \iint_{R_2} f(x,y) dA.$$

Example

Let *R* be the rectangular region $0 \le x, y \le 1$ shown below consisting of the triangles R_1 and R_2 .

We shall show that

$$\iint_{R} x^{2} y^{3} dA = \iint_{R_{1}} x^{2} y^{3} dA + \iint_{R_{2}} x^{2} y^{3} dA$$

Now

or

$$\iint_{R} x^{2}y^{3}dA = \int_{0}^{1} \int_{0}^{1} x^{2}y^{3}dxdy = \frac{1}{12}$$
$$\iint_{R} x^{2}y^{3}dA = \int_{0}^{1} \int_{0}^{1} x^{2}y^{3}dydx = \frac{1}{12}$$

The triangle R_1 is given by $0 \le x \le y, 0 \le y \le 1$ so

$$\iint_{R_1} x^2 y^3 dA = \int_0^1 \int_0^y x^2 y^3 dx dy = \frac{1}{21}$$

or

$$\iint_{R_1} x^2 y^3 dA = \int_0^1 \int_x^1 x^2 y^3 dy dx = \frac{1}{21}$$

Triangle R_2 is given by $0 \le y \le x, 0 \le x \le 1$ so

$$\iint_{R_2} x^2 y^3 dA = \int_0^1 \int_y^1 x^2 y^3 dx dy = \frac{1}{28}$$

or

$$\iint_{R_2} x^2 y^3 dA = \int_0^1 \int_0^x x^2 y^3 dy dx = \frac{1}{28}$$

Finally $\frac{1}{21} + \frac{1}{28} = \frac{1}{12}$, which is the result we got before.

Special Case-Area by Integration

The special case of $\iint_R f(x, y) dx dx$ when f = 1 is

$$\iint_R dA = \iint_R dx dy = \iint_R dy dx.$$

In this case the double integral represents the area of the region R in the x, y –plane.

Area = $\int_{c}^{d} \int_{g_{1}(y)}^{g_{2}(y)} dxdy$

Example

The integral $\int_0^1 \int_{x^2}^x dy \, dx$ represents the area of a region of the *x*, *y* – plane. Sketch the region and express the same area as a double integral with the order of integration reversed.

Solution:

The inner integral varies from $y = x^2$ to y = x. Integral gives area of vertical strip between x and x + dx for values of x from 0 to 1.

Change order and take integration first. Then x goes from y to \sqrt{y} to give a horizontal strip between y and y + dy. Thus

$$\int_{0}^{1} \int_{x^{2}}^{x} dy dx = \int_{0}^{1} \int_{y}^{\sqrt{y}} dx dy.$$
$$\int_{y}^{\sqrt{y}} dx dy = \int_{0}^{1} (\sqrt{y} - y) dy = \frac{y^{\frac{3}{2}}}{\frac{3}{2}} - \frac{y^{2}}{2} |_{0}^{1} = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Also

$$\int_{0}^{1} \int_{x^{2}}^{x} dy dx = \int_{0}^{1} (x - x^{2}) dx = \frac{1}{6}$$

which checks.

Example

Find the area bounded by the parabola $y = x^2$ and the line y = x + 2.

 \int_{0}^{1}

Solution:

The parabola and line intersect where $y = x^2 = x + 2$ $\Rightarrow x^2 - x - 2 = 0$ or (x - 2)(x + 1) = 0 Thus x = 2, x = -1 are the x coordinates of the points of intersection. $x = 2 \Rightarrow y = 4$; whereas $x = -1 \Rightarrow y = 1$

We shall first find the area as

$$\int_{R} \int dx dy.$$

When y is between 0 and 1, x goes from $-\sqrt{y}$ to $\sqrt{y} \Rightarrow \int_0^1 \int_{-\sqrt{y}}^{+\sqrt{y}} dx dy$ When y is between 1 and 4, x goes from y - 2 to $\sqrt{y} \Rightarrow \int_1^4 \int_{y-2}^{\sqrt{y}} dx dy$. Thus

$$A = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx \, dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx \, dy.$$

We now set up the expression for the area the other way. $\iint dy \, dx =$

$$\int_{-1}^{2} \int_{x^{2}}^{x+2} dy \, dx = \int_{-1}^{2} y |_{x^{2}}^{x+2} dx = \int_{-1}^{2} (x+2-x^{2}) dx = \frac{x^{2}}{2} + 2x - \frac{x^{3}}{3} |_{-1}^{2}$$

$$= 2 + 4 - \frac{8}{3} - \frac{1}{2} + 2 - \frac{1}{3} = 9 - \frac{9}{3} - \frac{1}{2} = 5\frac{1}{2}$$

Example

Find the area between the parabola $x = y - y^2$ and the line x + y = 0, that is the line y = -x.

Solution:

Now $x = y - y^2$ or $x = -(y^2 - y)$. Completing the square $) \Rightarrow x = -(y^2 - y + \frac{1}{4}) + \frac{1}{4}$ or $x - \frac{1}{4} = -(y - \frac{1}{2})^2$. Hence the parabola passes through $(\frac{1}{4}, \frac{1}{2})$. Now $x = 0 \Rightarrow y(1 - y) = 0 \Rightarrow y = 0$ and y = 1. Thus the parabola goes through the points (0,0), (0,1), and $(\frac{1}{4}, \frac{1}{2})$. We now find the points where the line and the parabola intersect. We have $x = y - y^2$ and $x = -y \Rightarrow -y = y - y^2$ or $0 = 2y - y^2 = y(2 - y)$. $\Rightarrow y = 0$ or y = 2. The points of intersection are therefore (0,0) and (-2,2). We again set up the expression for area in two ways. First consider

$$\int_{R} \int dx dy.$$

$$A = \int_{0}^{2} \int_{-y}^{y-y^{2}} dx dy = \int_{0}^{2} (y-y^{2}+y) dx dy = \int_{0}^{2} (2y-y^{2}) dy = y^{2} - \frac{y^{3}}{3}|_{0}^{2} = 4 - \frac{8}{3} = \frac{4}{3}.$$

Now for

$$\int_{R} \int dy dx$$

 $y - \frac{1}{2} = \pm \sqrt{\frac{1}{4} - x}$ on the parabola. Thus

$$A = \int_{-2}^{0} \int_{-x}^{\sqrt{\frac{1}{4} - x} + \frac{1}{2}} dy dx + \int_{0}^{\frac{1}{4}} \int_{-\sqrt{\frac{1}{4} - x} + \frac{1}{2}}^{\sqrt{\frac{1}{4} - x} + \frac{1}{2}} dy dx$$

Change the order of integration $in \int_{0}^{\frac{\pi}{4}} dx \int_{\sin x}^{\cos x} f(x, y) dy$

Polar coordinates-change of variables

Recall that given a point (x, y) we may assign to this point new coordinates (r, θ) as follows:

$$x = r\cos\theta$$
 $y = r\sin\theta$
 $\tan\theta = \frac{y}{x}$ $r = \sqrt{x^2 + y^2}$

If $r > \theta$ and θ are given, then they uniquely determine a point in the x, y –plane. An equation of the form $r = f(\theta)$ determines a curve in the (x, y) –plane. This topic was discussed in Ma 116. Example

Graph $r = \sin 3\theta$

 $r = \sin 3\theta$

Example

Graph $r = 4\cos\theta$

 $\Rightarrow r^2 = 4r\cos\theta = 4x. \text{ Since } r^2 = x^2 + y^2 \text{ so that } x^2 + y^2 = 4x \text{ or } x^2 - 4x + y^2 = 0, \text{ which is the circle } (x-2)^2 + y^2 = 4 \text{ centered at } (2,0) \text{ with radius } 2.$

Area Using Polar Coordinates

Recall dA = dx dy. Now from the figure

$$\Delta A = \frac{1}{2} (r + \overline{\Delta r})^2 \Delta \theta - \frac{1}{2} r^2 \Delta \theta$$
$$= \frac{1}{2} (r^2 + 2\overline{\Delta r}r + \Delta r^2) \Delta \theta - \frac{1}{2} r^2 \Delta \theta$$
$$= \overline{\Delta r} r \Delta \theta + \frac{1}{2} \Delta r^2 \Delta \theta \approx r \overline{\Delta r} \Delta \theta$$

$$dA = rdrd\theta$$

 \Rightarrow

 \Rightarrow

$$\iint_{R} f(x, y) dx dy \Rightarrow \iint_{R} F(r, \theta) r dr d\theta$$

Example

Find the area of the circle $(x-2)^2 + y^2 = 4$.

Solution:

We know that $A = \pi r^2 = 4\pi$. Using double integration in polar coordinates, we have

$$A = 2\int_{0}^{\frac{\pi}{2}} \int_{0}^{4\cos\theta} r dr d\theta = 2\int_{0}^{\frac{\pi}{2}} \frac{r^{2}}{2} |_{0}^{4\cos\theta} d\theta = \int_{0}^{\frac{\pi}{2}} [16\cos^{2}\theta] d\theta$$
$$= 16\int_{0}^{\frac{\pi}{2}} \left(\frac{1+\cos 2\theta}{2}\right) d\theta = 8\left[\theta + \frac{\sin 2\theta}{2}\right]_{0}^{\frac{\pi}{2}} = 8\left[\frac{\pi}{2}\right] = 4\pi.$$

Example Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy.$

$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-(r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta)} r dr d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^{2}} r dr d\theta = \int_{0}^{\frac{\pi}{2}} \frac{-e^{r^{2}}}{2} |_{0}^{\infty} d\theta = +\frac{1}{2} \int_{0}^{\frac{\pi}{2}} d\theta = \frac{\pi}{4}$$

Example

(*i*) Find the equations in polar coordinates of the curves $x^2 + y^2 = 2y$ and $x^2 + y^2 = 2x$ and graph the curves.

Solution:

The two curves are given by

$$r = 2\sin\theta$$

and

$$r = 2\cos\theta$$

The graphs are given below.

(*ii*) Give an integral or integrals in polar coordinates for the area between the two curves. **Solution**:

$$A = \iint_R r dr d\theta$$

where R is the region common to both circles. The two circles intersect when

$$2\cos\theta = 2\sin\theta$$

or when

 $\tan \theta = 1$

That is, at $\theta = \frac{\pi}{4}$. *r* goes from 0 to the circle $r = 2\sin\theta$, for $0 \le \theta \le \frac{\pi}{4}$ and from 0 to $r = 2\cos\theta$ for $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$. Thus we need two integrals to express the area.

$$A = \int_0^{\frac{\pi}{4}} \int_0^{2\sin\theta} r dr d\theta + \int_0^{\frac{\pi}{2}} \int_0^{2\cos\theta} r dr d\theta$$
$$= \frac{1}{2}\pi - 1$$

Example

Find the area which lies inside the cardioid $r = a(1 + \cos \theta)$ and outside the circle r = a. Use double integration. The figure below shows the two curves with a = 1.

$$A = \iint r dr d\theta = 2 \int_0^{\frac{\pi}{2}} \int_a^{a(1+\cos\theta)} r dr d\theta = 2a^2 + \frac{1}{4}a^2\pi$$

Example

Give an integral in polar coordinates which represents the area of the region R that lies outside the circle r = a and inside the circle $r = 2a\sin\theta$.

Solution:

We must sketch *R*.

First, $x = r\cos\theta$, $y = r\sin\theta$. Thus the circle r = a is centered at the origin and has radius *a*. We rewrite the equation of the other circle.

Thus

or

$$x^2 + (y - a)^2 = a^2$$

 $x^2 + y^2 = 2ay$

 $r^2 = 2ar\sin\theta$

This circle passes through the origin, is centered on the y-axis at (0, a) and has radius a. For convenience, a = 1 in the picture below.

To find the limits of integration, we have to equate the expressions for the two circles. $a = 2a \sin \theta \Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}, \frac{5\pi}{6}$, where the circles intercept. So θ lies between these two values. On the other hand, *r* goes from *a* to $2a \sin \theta$ for these values of θ . The integral for the area is:

$$\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \int_{a}^{2a\sin\theta} r dr d\theta = \frac{1}{3}a^{2}\pi + \frac{1}{2}a^{2}\sqrt{3}$$

Triple Integrals

We shall now discuss a logical extension of the double integral. Consider

$$\iiint_V F(x, y, z) dV = \iiint_V F(x, y, z) dx dy dz = \iiint_V F(x, y, z) dy dx dz = \iiint_V F(x, y, z) dz dx dy = \cdots \text{ etc.}$$

This is clearly merely an extension of the double integral. **Example**

Evaluate

$$I = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-x} xyz dz dy dx$$

$$I = \int_0^1 \left[\int_0^{1-x} \left\{ \int_0^{2-x} xyz \, dz \right\} dy \right] dx = \int_0^1 \left[\int_0^{1-x} xy \frac{(2-x)^2}{2} \, dy \right] dx$$
$$= \int_0^1 \frac{xy^2(2-x)^2}{4} \Big|_{y=0}^{y=1-x} dx = \int_0^1 \left[\frac{1}{4} x(x-1)^2 (x-2)^2 \right] dx$$
$$= \frac{1}{4} \int_0^1 (4x - 12x^2 + 13x^3 - 6x^4 + x^5) dx = \frac{13}{240}$$

Example

Compute the triple integral of F(x, y, z) = z over the region in the first octant bounded by the planes y = 0, z = 0, x + y = 2, 2y + x = 6 and the cylinder $y^2 + z^2 = 4$.

Volume

The case f = 1, i.e.

 $\int \int \int dV$

is of particular interest. It yields the volume between two surfaces. To see this suppose a region of x, y, z –space is bounded below by the surface $z = f_1(x, y)$, above by the surface $z = f_2(x, y)$ and laterally by a cylinder *C* with elements parallel to the *z* axis. Let *A* denote the region of the *x*, *y* –plane enclosed by the cylinder *C*.

Then the volume of the region is

$$V = \iint_{A} \int_{f_1(x,y)}^{f_2(x,y)} dz dy dx.$$

The x and y limits of integration extend over the region A. To get the x, y limits it is usually desirable to draw the x, y –plane view of the solid. Often one can get the boundary of A by eliminating z from $z = f_1(x, y)$ and $z = f_2(x, y)$, i.e. from $f_1(x, y) = f_2(x, y)$. In the x, y -plane this represents the boundary of A.

Example

Find the volume bounded by the paraboloid $z = 2x^2 + y^2$ and the parabolic cylinder $z = 4 - y^2$. $2x^2 + y^2$

Solution:

z: From paraboloid to cylinder $\Rightarrow 2x^2 + y^2 \rightarrow 4 - y^2$ *y*: From 0 to $\sqrt{2 - x^2}$; gotten by eliminating *z* from 2 equations

x: From 0 to $\sqrt{2}$ set; y = 0 in $x^2 + y^2 = 2$ \Rightarrow

$$V = 4 \int_0^{\sqrt{2}} \int_0^{\sqrt{2-x^2}} \int_{2x^2+y^2}^{4-y^2} dz dy dx = 4\pi$$

Example

Find the volume of the solid region *D* between the parabolic cylinders $z = y^2$ and $z = 2 - y^2$ for $0 \le x \le 3$. Sketch *D*.

Solution:

 $2 - y^2; y^2$

We obtain the intersection lines of the two surfaces: $z_1 = z_2 = 2 - y^2 = y^2 = y = \pm 1$. The limits of integration are then: $0 \le x \le 3$; $-1 \le y \le 1$; Then

$$V = \int_{0}^{3} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} dz dy dx$$

= $\int_{0}^{3} \int_{-1}^{1} \left[\left(2 - y^{2} \right) - y^{2} \right] dy dx$
= $\int_{0}^{3} \int_{-1}^{1} \left(2 - 2y^{2} \right) dy dx$
= 8

Cylindrical and Spherical Coordinates

Cylindrical coordinates are related to Cartesian coordinates via

 $x = r\cos\theta$ $y = r\sin\theta$ z = z

The relationship between a volume element in the two systems is

$$dV = dxdydz \rightarrow rdrd\theta dz$$
,

that is

Spherical coordinates are related to Cartesian coordinates via $x, y, z \rightarrow \rho, \theta, \phi$ where

 $x = \rho \cos \theta \sin \phi \qquad y = \rho \sin \theta \sin \phi \qquad z = \rho \cos \phi \qquad 0 \le \theta \le 2\pi \qquad 0 \le \phi \le \pi$ The relationship between a volume element in the two systems is

$$dV = dxdydz \to \rho^2 \sin\phi d\rho d\theta d\theta,$$

that is

$$\iiint dV = \iiint \rho^2 \sin \phi d\rho d\theta d\theta.$$

It is important to keep in mind that ϕ is measured from the z axis and thus varies only from 0 to π .

Example Find the volume above the cone $z^2 = x^2 + y^2$ and inside the sphere $x^2 + y^2 + z^2 = 2az$.

We shall use spherical coordinates.

Cone: $z^2 = x^2 + y^2$ $z = \rho \cos \phi$ $x = \rho \cos \theta \sin \phi$ $y = \rho \sin \theta \sin \phi$ The equation of the cone $\Rightarrow \rho^2 \cos^2 \phi = \rho^2 \cos^2 \theta \sin^2 \phi + \rho^2 \sin^2 \theta \sin^2 \phi$ or $\cos^2 \phi = \sin^2 \phi$ $\Rightarrow \tan \phi = 1 \Rightarrow \phi = \pm 45^\circ = \frac{\pi}{4}$ or $\phi = \frac{\pi}{4} + \pi = \frac{5\pi}{4}$. Sphere: $x^2 + y^2 + z^2 - 2az = 0$ or $x^2 + y^2 + (z - a)^2 = a^2$. Center at (0, 0, a). \Rightarrow $\rho^2 - 2a\rho \cos \phi = 0$ or $\rho = 2a \cos \phi$.

We see that ϕ goes from 0 to $\frac{\pi}{4}$, θ from 0 to 2π . and ρ from 0 to $\rho = 2a\cos\phi$. Hence

$$Volume = \iiint \rho^2 \sin \phi dV_{\rho\theta\phi} = \int_0^{\frac{\pi}{4}} \int_0^{2a\cos\phi} \int_0^{2\pi} \rho^2 \sin \phi d\theta d\rho d\phi = \pi a^3$$

Example

Give the expression in *cylindrical* coordinates for the volume of the solid inside both the cylinder $x^2 + y^2 = 4$ and the ellipsoid $4x^2 + 4y^2 + z^2 = 64$. Sketch the volume. Do *not* evaluate this expression.

SOLUTION

The ellipsoid intersects the *x*, *y*-plane in the circle $x^2 + y^2 = 16$. Thus, our region is bounded by the circle $x^2 + y^2 = 4$. So, in polar coordinates we have the equation r = 2. Next, we can solve the equation of the ellipsoid $4x^2 + 4y^2 + z^2 = 64$ for *z*, i.e., $z = \pm 2\sqrt{-x^2 - y^2} + 16$ which can be rewritten in polar coordinates as $z = \pm 2\sqrt{16 - r^2}$. The volume of the solid can now be written as:

$$2\int_{0}^{2\pi}\int_{0}^{2}\int_{0}^{+2\sqrt{16-r^{2}}} rdzdrd\theta$$

Additional Cylindrical and Spherical Coordinates Examples

Example Give an expression in cylindrical coordinates for the volume of the solid *T* bounded above by the plane z = y and below by the paraboloid $z = x^2 + y^2$. Sketch *T*. Do *not* evaluate this integral.

y

Solution: In cylindrical coordinates the plane has the equation $z = r \sin \theta$ and the paraboloid has the equation $z = r^2$. The two surfaces intersect when $y = x^2 + y^2$, that is the circle $x^2 + y^2 - y = 0$ or $x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}$. This circle is only in first and second quadrants. The equation of this circle is

$r = \sin\theta$ in polar coordinates.

Volume = $\int_{0}^{\pi} \int_{0}^{\sin\theta} \int_{r^{2}}^{r\sin\theta} r dz dr d\theta$

Example Evaluate

$$\iiint\limits_V \cos\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}} dV$$

where *V* is the unit ball.

Solution: V is given by $x^2 + y^2 + z^2 \le 1$. In spherical coordinates the equation for V is $\rho = 1$. Thus $\int \int \int \int dx \, dx \, dx = \int \int \int \frac{3}{2} \frac{dx}{dx} = \int \int \int \frac{3}{2} \frac{dx}{dx} \, dx = \int \int \frac{3}{2} \frac{dx}{dx} \, dx$

$$\iiint_V \left[\cos\left(x^2 + y^2 + z^2\right) \right]^{\frac{1}{2}} dV_{xyz} = \iiint_V \cos\left(\rho^2\right)^{\frac{1}{2}} \rho^2 \sin\phi dV_{\rho\theta\phi}$$
$$= \int_0^{2\pi} \int_0^{\pi} \int_0^1 \cos\left(\rho^3\right) \rho^2 \sin\phi d\rho d\phi d\theta = \frac{4}{3}\pi \sin 1$$

Example 1.) Set up, but DO NOT INTEGRATE, a triple integral to find the volume of the solid bounded above by $x^2 + y^2 + z^2 = 5$ and below by z = 1 using spherical coordinates.

Solution: The region of integration is shown below. One uses Plot 3D, Implicit to get the picture. $x^2 + y^2 + z^2 = 5$

 ρ will go from the plane z = 1 to the sphere $x^2 + y^2 + z^2 = 5$.

In spherical, $x^2 + y^2 + z^2 = 5 \implies \rho = \sqrt{5}$

 $z = 1 \Rightarrow \rho \cos \phi = 1 \Rightarrow \rho = \sec \phi.$ Also,

So, $\sec \phi \le \rho \le \sqrt{5}$.

For ϕ , we can form a right triangle with hypotenuse $\sqrt{5}$ (the radius of the sphere) and vertical side 1 which is the distance from the origin to z = 1. So the horizontal side is 2. $\sqrt{5} = 2.2361$

$$\sqrt{5} = 2.236$$

Therefore, $\tan \phi = 2 \implies \phi = \arctan 2$.

So, $0 \le \phi \le \arctan 2$.

The volume is:

$$V = \int_{0}^{2\pi} \int_{0}^{\arctan 2} \int_{\sec \phi}^{\sqrt{5}} p^2 \sin \phi d\rho d\phi d\theta$$

Surface Integrals

It is often necessary to integrate a function over a curved surface. Such integrals are called surface integrals.

Let $z = \vartheta(x, y)$ describe a particular surface *S*. Let f = f(x, y, z) be a given function. We desire to integrate *f* over *S*, i.e. to evaluate

$$\iint_{S} f(x, y, z) dS = \iint_{S} f(x, y, \vartheta(x, y)) dS.$$

Here dS comes from dividing *S* into pieces ΔS .

The special case f = 1 is of particular interest, since $\iint_{S} dS$ =area of curved surface S.

Remark. The case $\vartheta = 0$, i.e. z = 0 corresponds to finding an ordinary double integral since then *S* is simply a region in the *x*, *y* –plane.

Question: How does one evaluate $\iint f dS$?

Suppose *S* is such that it can be uniquely projected onto the *x*, *y* –plane. (We shall discuss the more general case later.) This is so if every line parallel to the *z* axis cuts *S* exactly once. As we take pieces ΔS smaller and smaller they approach flat pieces tilted with respect to the horizontal.

Now if \vec{n} is the normal to $z = \vartheta(x, y)$ then $\vec{n} = -\vartheta_x \vec{i} - \vartheta_y \vec{j} + \vec{k}$. Recall if \vec{r} is a vector from the origin to the surface then $d\vec{r} = dx\vec{i} + dy\vec{j} + dz\vec{k}$. Then

$$\vec{n} \cdot d\vec{r} = -\vartheta_x dx - \vartheta_y dy + dz.$$

But $z = \vartheta(x, y) \Rightarrow dz = \vartheta_x dx + \vartheta_y dy \Rightarrow \vec{n} \cdot d\vec{r} = 0$. Thus \vec{n} is normal to the surface. Also $\vec{n} \cdot \vec{k} = |\vec{n}| |\vec{k}| \cos \gamma$ where γ is the angle between the normal and the vertical. \Rightarrow

$$\cos \gamma = \frac{\overrightarrow{n} \cdot \overrightarrow{k}}{\left|\overrightarrow{n}\right| \left|\overrightarrow{k}\right|} = \frac{1}{\left(1 + \vartheta_x^2 + \vartheta_y^2\right)^{\frac{1}{2}} \sqrt{1}} = \left(1 + \vartheta_x^2 + \vartheta_y^2\right)^{-\frac{1}{2}}.$$

If dA is the projection onto the horizontal plane dS of then $dA = \cos \gamma \, dS$ or

$$dS = \frac{1}{\cos\gamma} dA$$

 \Rightarrow

$$dS = \left(1 + \vartheta_x^2 + \vartheta_y^2\right)^{\frac{1}{2}} dA = \left(1 + \vartheta_x^2 + \vartheta_y^2\right)^{\frac{1}{2}} dx dy = \left(1 + \vartheta_x^2 + \vartheta_y^2\right)^{\frac{1}{2}} dy dx.$$

Notice that $\vartheta = 0 \Rightarrow dA = dx \, dy = dy \, dx$, as expected. Hence

$$\iint_{S} f(x, y, z) dS = \iint_{R} f(x, y, \vartheta(x, y)) (1 + \vartheta_{x}^{2} + \vartheta_{y}^{2})^{\frac{1}{2}} dA$$

where *R* is the projection of *S* onto the x, y –plane.

Example

Find the surface area of the paraboloid $z = x^2 + y^2$ below the plane z = 1. Solution:

The surface S projects into the interior of the circle $x^2 + y^2 = 1$. This is R. Here

$$z = \vartheta(x, y) = x^{2} + y^{2}$$

Surface area =
$$\iint_{S} 1 \cdot dS = \iint_{R} (1 + \vartheta_{x}^{2} + \vartheta_{y}^{2})^{\frac{1}{2}} dA$$

Here *R* is circle $x^2 + y^2 \le 1$. Thus the surface area is given by

$$S = \iint_R \sqrt{1 + 4x^2 + 4y^2} \, dy dx$$

To evaluate this double integral we shall use polar coordinates. Then

Surface area =
$$\iint_{R} \sqrt{4r^{2} + 1} r dr d\theta = \int_{0}^{2\pi} \int_{0}^{1} \sqrt{4r^{2} + 1} r dr d\theta$$
$$= \frac{1}{8} \int_{0}^{2\pi} \frac{2}{3} \left(4r^{2} + 1\right)^{\frac{3}{2}} |_{0}^{1} d\theta = \frac{1}{12} \int_{0}^{2\pi} \left(5^{\frac{3}{2}-1}\right) d\theta = \frac{\pi}{6} \left(r\sqrt{5} - 1\right)$$
Check:
$$\int_{0}^{2\pi} \int_{0}^{1} \sqrt{4r^{2} + 1} r dr d\theta = \frac{5}{6} \sqrt{5} \pi - \frac{1}{6} \pi$$

Y

Example

Evaluate

$$I = \iint_{S} x^2 y^2 z^2 dS$$

over the curved surface of the cone $x^2 + y^2 = z^2$ which lies between z = 0 and z = 1.

Solution:

Here $z = \vartheta(x, y) = (x^2 + y^2)^{\frac{1}{2}}$. We need z_x and z_y . Since $z^2 = x^2 + y^2 \Rightarrow 2zz_x = 2x \Rightarrow z_x = \frac{x}{z}$ and $z_y = \frac{y}{z}$. Therefore

$$\left(1+\vartheta_x^2+\vartheta_y^2\right)^{\frac{1}{2}} = \left(1+z_x^2+z_y^2\right)^{\frac{1}{2}} = \left(1+\frac{x^2}{z^2}+\frac{y^2}{z^2}\right)^{\frac{1}{2}} = \left(1+\frac{x^2+y^2}{z^2}\right)^{\frac{1}{2}} = \sqrt{2}$$

Hence

$$I = \iint_{S} x^2 y^2 z^2 dS = \iint_{R} x^2 y^2 (x^2 + y^2) \sqrt{2} \, dx dy.$$

R is the interior of the circle $x^2 + y^2 = 1$. Again we use polar coordinates to evaluate *I*. Then since $z^2 = r^2$ on the cone we have

$$\begin{split} I &= \iint_{S} x^{2} y^{2} z^{2} dS = \int_{0}^{2\pi} \int_{0}^{1} r^{2} \cos^{2}\theta \cdot r^{2} \sin^{2}\theta \cdot r^{2} \cdot \sqrt{2} \cdot r dr d\theta \\ &= \frac{\sqrt{2}}{8} \int_{0}^{2\pi} \left(\cos^{2}\theta - \cos^{4}\theta \right) dr d\theta = \frac{\sqrt{2}}{8} \int_{0}^{2\pi} \left(\frac{1 + \cos 2\theta}{2} - \frac{(1 + \cos 2\theta)^{2}}{4} \right) d\theta \\ &= \frac{\sqrt{2}}{8} \int_{0}^{2\pi} \left(\frac{1}{2} - \frac{1 + \cos 4\theta}{4} \right) d\theta = \frac{\sqrt{2}}{64} \int_{0}^{2\pi} (1 - \cos 4\theta) d\pi = \frac{\pi \sqrt{2}}{32}. \end{split}$$

Example

Sketch the surface *S* given by the equation

$$x + 2y + 3z = 6$$

in the first octant. $2 - \frac{1}{3}x - \frac{2}{3}y$

Find the surface area of *S*.

Let S_{xy} denote the projection of *S* onto the *x*, *y* –plane. Then S_{xy} is the triangle shown in the first quadrant bounded by the line x + 2y = 6.

 $3 - \frac{x}{2}$

Example Find the surface area of the paraboloid given by $z = 4 - x^2 - y^2$ for $z \ge 0$.

Sketch the surface.

SOLUTION

The surface is a paraboloid (only the part above the *x*, *y* plane):

The formula for its surface area is $\iint_R \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$. Since $z = 4 - x^2 - y^2$, $\iint_R \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA = \iint_R \sqrt{1 + 4x^2 + 4y^2} dA$ Now the paraboloid intercepts the *x*, *y* plane, forming the circle $x^2 + y^2 = 4$.

Now the paraboloid intercepts the *x*, *y* plane, forming the circle $x^2 + y^2 = 4$. We have to determine the limits of integration of *x* and *y* using this circle. Introduce polar coordinates; then *r* goes from 0 to 2 and θ goes from 0 to 2π , and the surface-area integral becomes

 $\int_0^{2\pi} \int_0^2 \sqrt{1+4r^2} \, r dr d\theta = \frac{17}{6} \pi \sqrt{17} - \frac{1}{6} \pi.$