Ma 227 - MULTIPLE INTEGRATION

Remark: The concept of a function of one variable in which $y=g(x)$ may be extended to two or more variables. If z is uniquely determined by values of the variables x and y, then we say z is a function of x and y, and write $z=f(x, y)$. Thus for each pair of values x and y in the domain of $f, f(x, y)$ gives one value of z.

Double Integrals

Recall that if $f(x)>0$ then $\int_{a}^{b} f(x) d x$ represents the area under f between $x=a$ and $x=b$.

Now consider a function $f(x, y)$ of two variables x and y. Then $I=\iint_{R} f(x, y) d A$ denotes the double integral over the region R of the function $f(x, y)$. Actually when f is positive I is the volume under f which is enclosed by f, its projection R onto the x, y-plane and the "shell of the projection".

If we imagine a grid in the x, y-plane then $\Delta A=\Delta x \Delta y=\Delta y \Delta x$ and $d A=d x d y=d y d x \Rightarrow$ $I=\iint_{R} f(x, y) d x d y=\iint_{R} f(x, y) d y d x$.

If we are given the boundaries of R in terms of y as a function of x, i.e.

Then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left[\int_{f_{1}(x)}^{f_{2}(x)} f(x, y) d y\right] d x
$$

On the other hand if we are given the boundaries of R in a form in which x is a function of y as indicated below

Then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d}\left[\int_{g_{1}(y)}^{g_{2}(y)} f(x, y) d x\right] d y
$$

Evaluate $\iint_{R} x^{2} y^{3} d A$ where R is the region contained by the lines $x=1, x=2, y=2$, and $y=3$.

$$
\begin{aligned}
\iint_{R} x^{2} y^{3} d A & =\int_{2}^{3} \int_{1}^{2} x^{2} y^{3} d x d y=\int_{2}^{3} y^{3}\left[\int_{1}^{2} x^{2} d x\right] d y=\int_{2}^{3} y^{3}\left[\frac{x^{3}}{3}\right]_{1}^{2} d y \\
& =\int_{2}^{3} y^{3}\left[\frac{8}{3}-\frac{1}{3}\right] d y=\frac{7}{3} \int_{2}^{3} y^{3} d y=\frac{7}{3}\left[\frac{y^{4}}{4}\right]_{2}^{3}=\frac{7}{12}\left[3^{4}-2^{4}\right]=\frac{455}{12}
\end{aligned}
$$

We may also calculate the double integral by integrating with respect to y first

$$
\begin{aligned}
\iint_{R} x^{2} y^{3} d A & =\int_{1}^{2} \int_{2}^{3} x^{2} y^{3} d y d x=\int_{1}^{2} x^{2}\left[\int_{2}^{3} y^{3} d y\right] d x=\int_{1}^{2} x^{2}\left[\frac{y^{4}}{4}\right]_{2}^{3} d x \\
& =\frac{1}{4}\left[3^{4}-2^{4}\right] \int_{1}^{2} x^{2} d x=\frac{65}{4}\left[\frac{x^{3}}{3}\right]_{1}^{2}=\frac{1}{12}(65)[8-1]=\frac{455}{12}
\end{aligned}
$$

Thus $\iint_{R} x^{2} y^{3} d y d x=\iint_{R} x^{2} y^{3} d x d y$. This is true in general. However, one must make sure that the limits of integration are correct.

Evaluation of Double Integrals

Here are a couple of examples of how one evaluates more complicated double integrals.

Example

Evaluate

$$
\begin{gathered}
\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} d x d y \\
\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} d x d y=\int_{1}^{\ln 8}\left[\int_{0}^{\ln y} e^{x} d x\right] e^{y} d y=\int_{1}^{\ln 8}\left[e^{x}\right]_{0}^{\ln y} e^{y} d y=\int_{1}^{\ln 8} e^{y}[y-1] d y=\int_{1}^{\ln 8} y e^{y} d y-\int_{1}^{\ln 8} e^{y} d y
\end{gathered}
$$

We use integration by parts to evaluate $\int_{1}^{\ln 8} y e^{y} d y$ with $u=y$ and $d v=e^{y} d y$

$$
\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} d x d y=\left[y e^{y}\right]_{1}^{\ln 8}-\int_{1}^{\ln 8} e^{y} d y-\int_{1}^{\ln 8} e^{y} d y=8 \ln 8-e-\left.2 e^{y}\right|_{1} ^{\ln 8}=8 \ln 8-e-16+2 e=8 \ln 8+e-16
$$

Example

Evaluate

$$
\iint_{R} x^{2} y^{3} d A
$$

where R is the triangle with vertices at $(0,0),(0,1),(1,1)$.

Solution:

The triangle is shown below.

We will set up the integration in two ways. Consider first

$$
\iint_{R} x^{2} y^{3} d x d y
$$

Taking a horizontal strip parallel to the x-axis we see that x goes from the y-axis to the line $x=y$, whereas y goes from 0 to 1 . Thus

$$
\iint_{R} x^{2} y^{3} d x d y=\int_{0}^{1} \int_{0}^{y} x^{2} y^{3} d x d y=\frac{1}{21}
$$

If we now consider

$$
\iint_{R} x^{2} y^{3} d y d x
$$

then using a vertical strip parallel to the y-axis we see that y goes from the line $y=x$ to 1 . so we have

$$
\iint_{R} x^{2} y^{3} d y d x=\int_{0}^{1} \int_{x}^{1} x^{2} y^{3} d y d x=\frac{1}{21}
$$

Example

Find the volume of the solid whose base is in the x, y-plane and is the triangle bounded by the x-axis, the line $y=x$ and the line $x=1$, while the top of the solid is the plane $z=x+y+1$.

$$
d V=f(x, y) d A=(x+y+1) d x d y=(x+y+1) d y d x
$$

Thus

$$
V=\iint_{R}(x+y+1) d A
$$

where R is the base of the solid which is shown below.

The boundaries of R are $y=0, y=x$, and $x=1$. Hence

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{0}^{x}(x+y+1) d y d x=\int_{0}^{1}\left[x y+\frac{y^{2}}{2}+y\right]_{0}^{x} d x=\int_{0}^{1}\left[x^{2}+\frac{x^{2}}{2}+x\right] d x \\
& =\int_{0}^{1}\left(\frac{3}{2} x^{2}+x\right) d x=\left[\frac{3}{2} \frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Note that another expression for the volume is

$$
V=\int_{0}^{1} \int_{y}^{1}(x+y+1) d x d y
$$

Properties of Double Integrals

Double integrals have the same properties as integrals of one variable. For example, if c_{1} and c_{2} are constants, then

$$
\iint_{R}\left[c_{1} f(x, y)+c_{2} g(x, y)\right] d A=c_{1} \iint_{R} f(x, y) d A+c_{2} \iint_{R} g(x, y) d A .
$$

(1) $\int_{-1}^{5} \int_{x-1}^{x}\left(4 x e^{y}-3 y \sin x\right) d y d x=$

$$
\begin{aligned}
& -1 \mathrm{~J} x-1 \\
& e^{5} \frac{1}{2}\left(-32+32 e^{-1}+6(\sin 5) e^{-5}-27(\cos 5) e^{-5}-16 e^{-6}+16 e^{-7}+6(\sin 1) e^{-5}-9(\cos 1) e^{-5}\right)
\end{aligned}
$$

whereas
(2) $4 \int_{-1}^{5} \int_{x-1}^{x} x e^{y} d y d x=-8\left(-2+2 e^{-1}-e^{-6}+e^{-7}\right) e^{5}$
and
(3) $-3 \int_{-1}^{5} \int_{x-1}^{x} y \sin x d y d x=-3 \sin 5+\frac{27}{2} \cos 5-3 \sin 1+\frac{9}{2} \cos 1$

Adding the results given by (2) and (3) gives (1) after a bit of algebra.

If R is a closed region which can be decomposed into regions R_{1} and R_{2} and f is continuous over R, then

$$
\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A .
$$

Example

Let R be the rectangular region $0 \leq x, y \leq 1$ shown below consisting of the triangles R_{1} and R_{2}.

We shall show that

$$
\iint_{R} x^{2} y^{3} d A=\iint_{R_{1}} x^{2} y^{3} d A+\iint_{R_{2}} x^{2} y^{3} d A
$$

Now

$$
\iint_{R} x^{2} y^{3} d A=\int_{0}^{1} \int_{0}^{1} x^{2} y^{3} d x d y=\frac{1}{12}
$$

or

$$
\iint_{R} x^{2} y^{3} d A=\int_{0}^{1} \int_{0}^{1} x^{2} y^{3} d y d x=\frac{1}{12}
$$

The triangle R_{1} is given by $0 \leq x \leq y, 0 \leq y \leq 1$ so

$$
\iint_{R_{1}} x^{2} y^{3} d A=\int_{0}^{1} \int_{0}^{y} x^{2} y^{3} d x d y=\frac{1}{21}
$$

or

$$
\iint_{R_{1}} x^{2} y^{3} d A=\int_{0}^{1} \int_{x}^{1} x^{2} y^{3} d y d x=\frac{1}{21}
$$

Triangle R_{2} is given by $0 \leq y \leq x, 0 \leq x \leq 1$ so

$$
\iint_{R_{2}} x^{2} y^{3} d A=\int_{0}^{1} \int_{y}^{1} x^{2} y^{3} d x d y=\frac{1}{28}
$$

or

$$
\iint_{R_{2}} x^{2} y^{3} d A=\int_{0}^{1} \int_{0}^{x} x^{2} y^{3} d y d x=\frac{1}{28}
$$

Finally $\frac{1}{21}+\frac{1}{28}=\frac{1}{12}$, which is the result we got before.

Special Case-Area by Integration

The special case of $\iint_{R} f(x, y) d x d x$ when $f=1$ is

$$
\iint_{R} d A=\iint_{R} d x d y=\iint_{R} d y d x
$$

In this case the double integral represents the area of the region R in the x, y-plane.

$$
\text { Area }=\int_{a}^{b} \int_{f_{1}(x)}^{f_{2}(x)} d y d x
$$

$$
\text { Area }=\int_{c}^{d} \int_{g_{1}(y)}^{g_{2}(y)} d x d y
$$

Example

The integral $\int_{0}^{1} \int_{x^{2}}^{x} d y d x$ represents the area of a region of the $x, y-$ plane. Sketch the region and express the same area as a double integral with the order of integration reversed.

Solution:

The inner integral varies from $y=x^{2}$ to $y=x$. Integral gives area of vertical strip between x and $x+d x$ for values of x from 0 to 1 .

Change order and take integration first. Then x goes from y to \sqrt{y} to give a horizontal strip between y and $y+d y$. Thus

$$
\begin{gathered}
\int_{0}^{1} \int_{x^{2}}^{x} d y d x=\int_{0}^{1} \int_{y}^{\sqrt{y}} d x d y . \\
\int_{0}^{1} \int_{y}^{\sqrt{y}} d x d y=\int_{0}^{1}(\sqrt{y}-y) d y=\frac{y^{\frac{3}{2}}}{\frac{3}{2}}-\left.\frac{y^{2}}{2}\right|_{0} ^{1}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6} .
\end{gathered}
$$

Also

$$
\int_{0}^{1} \int_{x^{2}}^{x} d y d x=\int_{0}^{1}\left(x-x^{2}\right) d x=\frac{1}{6}
$$

which checks.

Example

Find the area bounded by the parabola $y=x^{2}$ and the line $y=x+2$.

Solution:

The parabola and line intersect where $y=x^{2}=x+2$
$\Rightarrow x^{2}-x-2=0$ or $(x-2)(x+1)=0$ Thus $x=2, \quad x=-1$ are the x coordinates of the points of intersection. $x=2 \Rightarrow y=4$; whereas $x=-1 \Rightarrow y=1$

We shall first find the area as

$$
\iint_{R} d x d y .
$$

When y is between 0 and $1, x$ goes from $-\sqrt{y}$ to $\sqrt{y} \Rightarrow \int_{0}^{1} \int_{-\sqrt{y}}^{+\sqrt{y}} d x d y$
When y is between 1 and $4, x$ goes from $y-2$ to $\sqrt{y} \Rightarrow \int_{1}^{4} \int_{y-2}^{\sqrt{y}} d x d y$. Thus

$$
A=\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} d x d y+\int_{1}^{4} \int_{y-2}^{\sqrt{y}} d x d y
$$

We now set up the expression for the area the other way. $\iint_{R} d y d x=$

$$
\int_{-1}^{2} \int_{x^{2}}^{x+2} d y d x=\left.\int_{-1}^{2} y\right|_{x^{2}} ^{x+2} d x=\int_{-1}^{2}\left(x+2-x^{2}\right) d x=\frac{x^{2}}{2}+2 x-\left.\frac{x^{3}}{3}\right|_{-1} ^{2}
$$

$$
=2+4-\frac{8}{3}-\frac{1}{2}+2-\frac{1}{3}=9-\frac{9}{3}-\frac{1}{2}=5 \frac{1}{2} .
$$

Example

Find the area between the parabola $x=y-y^{2}$ and the line $x+y=0$, that is the line $y=-x$.

Solution:

Now $x=y-y^{2}$ or $x=-\left(y^{2}-y\right)$. Completing the square $) \Rightarrow x=-\left(y^{2}-y+\frac{1}{4}\right)+\frac{1}{4}$ or $x-\frac{1}{4}=-\left(y-\frac{1}{2}\right)^{2}$. Hence the parabola passes through $\left(\frac{1}{4}, \frac{1}{2}\right)$. Now $x=0 \Rightarrow y(1-y)=0 \Rightarrow y=0$ and $y=1$. Thus the parabola goes through the points $(0,0), \quad(0,1)$, and $\left(\frac{1}{4}, \frac{1}{2}\right)$. We now find the points where the line and the parabola intersect. We have $x=y-y^{2}$ and $x=-y \Rightarrow-y=y-y^{2}$ or $0=2 y-y^{2}=y(2-y) . \Rightarrow y=0$ or $y=2$. The points of intersection are therefore $(0,0)$ and $(-2,2)$. We again set up the expression for area in two ways. First consider

$$
\begin{gathered}
\iint_{R} d x d y . \\
A=\int_{0}^{2} \int_{-y}^{y-y^{2}} d x d y=\int_{0}^{2}\left(y-y^{2}+y\right) d x d y=\int_{0}^{2}\left(2 y-y^{2}\right) d y=y^{2}-\left.\frac{y^{3}}{3}\right|_{0} ^{2}=4-\frac{8}{3}=\frac{4}{3} .
\end{gathered}
$$

Now for

$$
\iint_{R} d y d x .
$$

$y-\frac{1}{2}= \pm \sqrt{\frac{1}{4}-x}$ on the parabola. Thus

$$
A=\int_{-2}^{0} \int_{-x}^{\sqrt{\frac{1}{4}-x}+\frac{1}{2}} d y d x+\int_{0}^{\frac{1}{4}} \int_{-\sqrt{\frac{1}{4}-x}+\frac{1}{2}}^{\sqrt{\frac{1}{4}-x}+\frac{1}{2}} d y d x
$$

Change the order of integration in $\int_{0}^{\frac{\pi}{4}} d x \int_{\sin x}^{\cos x} f(x, y) d y$

Polar coordinates-change of variables

Recall that given a point (x, y) we may assign to this point new coordinates (r, θ) as follows:

$$
\begin{array}{cc}
x=r \cos \theta & y=r \sin \theta \\
\tan \theta=\frac{y}{x} & r=\sqrt{x^{2}+y^{2}}
\end{array}
$$

If $r>\theta$ and θ are given, then they uniquely determine a point in the x, y-plane. An equation of the form $r=f(\theta)$ determines a curve in the (x, y)-plane. This topic was discussed in Ma 116.

Example

Graph $r=\sin 3 \theta$

Example

Graph $r=4 \cos \theta$

$\Rightarrow r^{2}=4 r \cos \theta=4 x$. Since $r^{2}=x^{2}+y^{2}$ so that $x^{2}+y^{2}=4 x$ or $x^{2}-4 x+y^{2}=0$, which is the circle $(x-2)^{2}+y^{2}=4$ centered at $(2,0)$ with radius 2 .

Area Using Polar Coordinates

Recall $d A=d x d y$. Now from the figure

$$
\begin{aligned}
\Delta A & =\frac{1}{2}(r+\overline{\Delta r})^{2} \Delta \theta-\frac{1}{2} r^{2} \Delta \theta \\
& =\frac{1}{2}\left(r^{2}+2 \overline{\Delta r} r+\Delta r^{2}\right) \Delta \theta-\frac{1}{2} r^{2} \Delta \theta \\
& =\overline{\Delta r} r \Delta \theta+\frac{1}{2} \Delta r^{2} \Delta \theta \approx r \overline{\Delta r} \Delta \theta
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad d A=r d r d \theta \\
& \quad \iint_{R} f(x, y) d x d y \Rightarrow \iint_{R} F(r, \theta) r d r d \theta
\end{aligned}
$$

Example

Find the area of the circle $(x-2)^{2}+y^{2}=4$.

Solution:

We know that $A=\pi r^{2}=4 \pi$. Using double integration in polar coordinates, we have

$$
\begin{aligned}
A & =2 \int_{0}^{\frac{\pi}{2}} \int_{0}^{4 \cos \theta} r d r d \theta=\left.2 \int_{0}^{\frac{\pi}{2}} \frac{r^{2}}{2}\right|_{0} ^{4 \cos \theta} d \theta=\int_{0}^{\frac{\pi}{2}}\left[16 \cos ^{2} \theta\right] d \theta \\
& =16 \int_{0}^{\frac{\pi}{2}}\left(\frac{1+\cos 2 \theta}{2}\right) d \theta=8\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}=8\left[\frac{\pi}{2}\right]=4 \pi
\end{aligned}
$$

Example

Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$.
Switching to polar coordinates, we have

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)} r d r d \theta \\
= & \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=\left.\int_{0}^{\frac{\pi}{2}} \frac{-e^{r^{2}}}{2}\right|_{0} ^{\infty} d \theta=+\frac{1}{2} \int_{0}^{\frac{\pi}{2}} d \theta=\frac{\pi}{4}
\end{aligned}
$$

Example

(i) Find the equations in polar coordinates of the curves $x^{2}+y^{2}=2 y$ and $x^{2}+y^{2}=2 x$ and graph the curves.

Solution:

The two curves are given by

$$
r=2 \sin \theta
$$

and

$$
r=2 \cos \theta
$$

The graphs are given below.

(ii) Give an integral or integrals in polar coordinates for the area between the two curves.

Solution:

$$
A=\iint_{R} r d r d \theta
$$

where R is the region common to both circles. The two circles intersect when

$$
2 \cos \theta=2 \sin \theta
$$

or when

$$
\tan \theta=1
$$

That is, at $\theta=\frac{\pi}{4}$. r goes from 0 to the circle $r=2 \sin \theta$, for $0 \leq \theta \leq \frac{\pi}{4}$ and from 0 to $r=2 \cos \theta$ for $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$. Thus we need two integrals to express the area.

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \sin \theta} r d r d \theta+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} r d r d \theta \\
& =\frac{1}{2} \pi-1
\end{aligned}
$$

Example

Find the area which lies inside the cardioid $r=a(1+\cos \theta)$ and outside the circle $r=a$. Use double integration. The figure below shows the two curves with $a=1$.

$$
A=\iint r d r d \theta=2 \int_{0}^{\frac{\pi}{2}} \int_{a}^{a(1+\cos \theta)} r d r d \theta=2 a^{2}+\frac{1}{4} a^{2} \pi
$$

Example

Give an integral in polar coordinates which represents the area of the region R that lies outside the circle $r=a$ and inside the circle $r=2 a \sin \theta$.

Solution:

We must sketch R.
First, $x=r \cos \theta, y=r \sin \theta$. Thus the circle $r=a$ is centered at the origin and has radius a. We rewrite the equation of the other circle.

$$
r^{2}=2 a r \sin \theta
$$

Thus

$$
x^{2}+y^{2}=2 a y
$$

or

$$
x^{2}+(y-a)^{2}=a^{2}
$$

This circle passes through the origin, is centered on the y-axis at $(0, a)$ and has radius a. For convenience, $a=1$ in the picture below.

To find the limits of integration, we have to equate the expressions for the two circles.
$a=2 a \sin \theta \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}, \frac{5 \pi}{6}$, where the circles intercept. So θ lies between these two values. On the other hand, r goes from a to $2 a \sin \theta$ for these values of θ.
The integral for the area is:

$$
\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \int_{a}^{2 a \sin \theta} r d r d \theta=\frac{1}{3} a^{2} \pi+\frac{1}{2} a^{2} \sqrt{3}
$$

Triple Integrals

We shall now discuss a logical extension of the double integral. Consider

$$
\iiint_{V} F(x, y, z) d V=\iiint_{V} F(x, y, z) d x d y d z=\iiint_{V} F(x, y, z) d y d x d z=\iiint_{V} F(x, y, z) d z d x d y=\cdots \text { etc. }
$$

This is clearly merely an extension of the double integral.

Example

Evaluate

$$
\begin{aligned}
& I=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-x} x y z d z d y d x \\
& I=\int_{0}^{1}\left[\int_{0}^{1-x}\left\{\int_{0}^{2-x} x y z d z\right\} d y\right] d x=\int_{0}^{1}\left[\int_{0}^{1-x} x y \frac{(2-x)^{2}}{2} d y\right] d x \\
& =\left.\int_{0}^{1} \frac{x y^{2}(2-x)^{2}}{4}\right|_{y=0} ^{y=1-x} d x=\int_{0}^{1}\left[\frac{1}{4} x(x-1)^{2}(x-2)^{2}\right] d x \\
& =
\end{aligned}
$$

Example

Compute the triple integral of $F(x, y, z)=z$ over the region in the first octant bounded by the planes $y=0, \quad z=0, \quad x+y=2, \quad 2 y+x=6$ and the cylinder $y^{2}+z^{2}=4$.

$: \frac{26}{3}$

Volume

The case $f=1$, i.e.

$$
\iiint d v
$$

is of particular interest. It yields the volume between two surfaces. To see this suppose a region of x, y, z-space is bounded below by the surface $z=f_{1}(x, y)$, above by the surface $z=f_{2}(x, y)$ and laterally by a cylinder C with elements parallel to the z axis. Let A denote the region of the x, y-plane enclosed by the cylinder C.

Then the volume of the region is

$$
V=\iiint_{A} \int_{f_{1}(x, y)}^{f_{2}(x, y)} d z d y d x .
$$

The x and y limits of integration extend over the region A. To get the x, y limits it is usually desirable to draw the x, y-plane view of the solid. Often one can get the boundary of A by eliminating z from $z=f_{1}(x, y)$ and $z=f_{2}(x, y)$, i.e. from $f_{1}(x, y)=f_{2}(x, y)$. In the x, y-plane this represents the boundary of A.

Example

Find the volume bounded by the paraboloid $z=2 x^{2}+y^{2}$ and the parabolic cylinder $z=4-y^{2}$. $2 x^{2}+y^{2}$

Solution:

z: From paraboloid to cylinder $\Rightarrow 2 x^{2}+y^{2} \rightarrow 4-y^{2}$
y : From 0 to $\sqrt{2-x^{2}}$; gotten by eliminating z from 2 equations
x : From 0 to $\sqrt{2}$ set; $y=0$ in $x^{2}+y^{2}=2$
\Rightarrow

$$
V=4 \int_{0}^{\sqrt{2}} \int_{0}^{\sqrt{2-x^{2}}} \int_{2 x^{2}+y^{2}}^{4-y^{2}} d z d y d x=4 \pi
$$

Example

Find the volume of the solid region D between the parabolic cylinders $z=y^{2}$ and $z=2-y^{2}$ for $0 \leq x \leq 3$. Sketch D.

Solution:

$2-y^{2} ; y^{2}$
We obtain the intersection lines of the two surfaces: $z_{1}=z_{2}=2-y^{2}=y^{2} \Rightarrow y= \pm 1$.
The limits of integration are then: $0 \leq x \leq 3 ;-1 \leq y \leq 1$;
Then

$$
\begin{aligned}
V & =\int_{0}^{3} \int_{-1}^{1} \int_{y^{2}}^{2-y^{2}} d z d y d x \\
& =\int_{0}^{3} \int_{-1}^{1}\left[\left(2-y^{2}\right)-y^{2}\right] d y d x \\
& =\int_{0}^{3} \int_{-1}^{1}\left(2-2 y^{2}\right) d y d x \\
& =8
\end{aligned}
$$

Cylindrical and Spherical Coordinates

Cylindrical coordinates are related to Cartesian coordinates via

$$
x=r \cos \theta \quad y=r \sin \theta \quad z=z
$$

The relationship between a volume element in the two systems is

$$
d V=d x d y d z \rightarrow r d r d \theta d z
$$

that is

$$
\iiint d V=\iiint r d r d \theta d z
$$

Spherical coordinates are related to Cartesian coordinates via $x, y, z \rightarrow \rho, \theta, \phi$ where

$$
x=\rho \cos \theta \sin \phi \quad y=\rho \sin \theta \sin \phi \quad z=\rho \cos \phi \quad 0 \leq \theta \leq 2 \pi \quad 0 \leq \phi \leq \pi
$$

The relationship between a volume element in the two systems is

$$
d V=d x d y d z \rightarrow \rho^{2} \sin \phi d \rho d \theta d \theta
$$

that is

$$
\iiint d V=\iiint \rho^{2} \sin \phi d \rho d \theta d \theta
$$

It is important to keep in mind that ϕ is measured from the z axis and thus varies only from 0 to π.

Example

Find the volume above the cone $z^{2}=x^{2}+y^{2}$ and inside the sphere $x^{2}+y^{2}+z^{2}=2 a z$.

We shall use spherical coordinates.
Cone: $z^{2}=x^{2}+y^{2}$

$$
z=\rho \cos \phi \quad x=\rho \cos \theta \sin \phi \quad y=\rho \sin \theta \sin \phi
$$

The equation of the cone $\Rightarrow \rho^{2} \cos ^{2} \phi=\rho^{2} \cos ^{2} \theta \sin ^{2} \phi+\rho^{2} \sin ^{2} \theta \sin ^{2} \phi$ or $\cos ^{2} \phi=\sin ^{2} \phi$

$$
\Rightarrow \tan \phi=1 \Rightarrow \phi= \pm 45^{\circ}=\frac{\pi}{4} \text { or } \phi=\frac{\pi}{4}+\pi=\frac{5 \pi}{4} .
$$

Sphere: $x^{2}+y^{2}+z^{2}-2 a z=0$ or $x^{2}+y^{2}+(z-a)^{2}=a^{2}$. Center at $(0,0, a)$.

$$
\begin{aligned}
& \Rightarrow \quad \rho^{2}-2 a \rho \cos \phi=0 \text { or } \rho=2 a \cos \phi .
\end{aligned}
$$

We see that ϕ goes from 0 to $\frac{\pi}{4}, \theta$ from 0 to 2π. and ρ from 0 to $\rho=2 a \cos \phi$.
Hence

$$
\text { Volume }=\iiint \rho^{2} \sin \phi d V_{\rho \theta \phi}=\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 a \cos \phi} \int_{0}^{2 \pi} \rho^{2} \sin \phi d \theta d \rho d \phi=\pi a^{3}
$$

Example

Give the expression in cylindrical coordinates for the volume of the solid inside both the cylinder $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$. Sketch the volume. Do not evaluate this expression.

SOLUTION

The ellipsoid intersects the x, y-plane in the circle $x^{2}+y^{2}=16$. Thus, our region is bounded by the circle $x^{2}+y^{2}=4$. So , in polar coordinates we have the equation $r=2$. Next, we can solve the equation of the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$ for z, i.e., $z= \pm 2 \sqrt{-x^{2}-y^{2}+16}$ which can be rewritten in polar coordinates as $z= \pm 2 \sqrt{16-r^{2}}$. The volume of the solid can now be written as:

$$
2 \int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{+2 \sqrt{16-r^{2}}} r d z d r d \theta
$$

Additional Cylindrical and Spherical Coordinates Examples

Example Give an expression in cylindrical coordinates for the volume of the solid T bounded above by the plane $z=y$ and below by the paraboloid $z=x^{2}+y^{2}$. Sketch T. Do not evaluate this integral.
y

Solution: In cylindrical coordinates the plane has the equation $z=r \sin \theta$ and the paraboloid has the equation $z=r^{2}$. The two surfaces intersect when $y=x^{2}+y^{2}$, that is the circle $x^{2}+y^{2}-y=0$ or $x^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}$. This circle is only in first and second quadrants. The equation of this circle is
$r=\sin \theta$ in polar coordinates.

$$
\text { Volume }=\int_{0}^{\pi} \int_{0}^{\sin \theta} \int_{r^{2}}^{r \sin \theta} r d z d r d \theta
$$

Example Evaluate

$$
\iiint_{V} \cos \left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}} d V
$$

where V is the unit ball.
Solution: V is given by $x^{2}+y^{2}+z^{2} \leq 1$. In spherical coordinates the equation for V is $\rho=1$. Thus

$$
\begin{aligned}
\iiint_{V}\left[\cos \left(x^{2}+y^{2}+z^{2}\right)\right]^{\frac{3}{2}} d V_{x y z} & =\iiint_{V} \cos \left(\rho^{2}\right)^{\frac{3}{2}} \rho^{2} \sin \phi d V_{\rho \theta \phi} \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \cos \left(\rho^{3}\right) \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{4}{3} \pi \sin 1
\end{aligned}
$$

Example 1.) Set up, but DO NOT INTEGRATE, a triple integral to find the volume of the solid bounded above by $x^{2}+y^{2}+z^{2}=5$ and below by $z=1$ using spherical coordinates.

Solution: The region of integration is shown below. One uses Plot 3D, Implicit to get the picture. $x^{2}+y^{2}+z^{2}=5$

ρ will go from the plane $z=1$ to the sphere $x^{2}+y^{2}+z^{2}=5$.
In spherical, $x^{2}+y^{2}+z^{2}=5 \Rightarrow \rho=\sqrt{5}$
Also, $\quad z=1 \Rightarrow \rho \cos \phi=1 \Rightarrow \rho=\sec \phi$.
So, $\sec \phi \leq \rho \leq \sqrt{5}$.
For ϕ, we can form a right triangle with hypotenuse $\sqrt{5}$ (the radius of the sphere) and vertical side 1 which is the distance from the origin to $z=1$. So the horizontal side is 2 . $\sqrt{5}=2.2361$
x

Therefore, $\tan \phi=2 \Rightarrow \phi=\arctan 2$.

So, $0 \leq \phi \leq \arctan 2$.

The volume is:

$$
V=\int_{0}^{2 \pi} \int_{0}^{\arctan 2} \int_{\sec \phi}^{\sqrt{5}} p^{2} \sin \phi d \rho d \phi d \theta
$$

Surface Integrals

It is often necessary to integrate a function over a curved surface. Such integrals are called surface integrals.
Let $z=\vartheta(x, y)$ describe a particular surface S. Let $f=f(x, y, z)$ be a given function. We desire to integrate f over S, i.e. to evaluate

$$
\iint_{S} f(x, y, z) d S=\iint_{S} f(x, y, \vartheta(x, y)) d S .
$$

Here $d S$ comes from dividing S into pieces ΔS.

The special case $f=1$ is of particular interest, since $\iint_{S} d S=$ area of curved surface S.
Remark. The case $\vartheta=0$, i.e. $z=0$ corresponds to finding an ordinary double integral since then S is simply a region in the x, y-plane.
Question: How does one evaluate $\iint_{S} f d S$?
Suppose S is such that it can be uniquely projected onto the x, y-plane. (We shall discuss the more general case later.) This is so if every line parallel to the z axis cuts S exactly once. As we take pieces ΔS smaller and smaller they approach flat pieces tilted with respect to the horizontal.

Now if \vec{n} is the normal to $z=\vartheta(x, y)$ then $\vec{n}=-\vartheta_{x} \vec{i}-\vartheta_{y} \vec{j}+\vec{k}$. Recall if \vec{r} is a vector from the origin to the surface then $d \vec{r}=d x \vec{i}+d y \vec{j}+d z \vec{k}$. Then

$$
\vec{n} \cdot d \vec{r}=-\vartheta_{x} d x-\vartheta_{y} d y+d z
$$

But $z=\vartheta(x, y) \Rightarrow d z=\vartheta_{x} d x+\vartheta_{y} d y \Rightarrow \vec{n} \cdot d \vec{r}=0$. Thus \vec{n} is normal to the surface.
Also $\vec{n} \cdot \vec{k}=|\vec{n}||\vec{k}| \cos \gamma$ where γ is the angle between the normal and the vertical.

$$
\cos \gamma=\frac{\vec{n} \cdot \vec{k}}{|\vec{n}||\vec{k}|}=\frac{1}{\left(1+\vartheta_{x}^{2}+\vartheta_{y}^{2}\right)^{\frac{1}{2}} \sqrt{1}}=\left(1+\vartheta_{x}^{2}+\vartheta_{y}^{2}\right)^{-\frac{1}{2}} .
$$

If $d A$ is the projection onto the horizontal plane $d S$ of then $d A=\cos \gamma d S$ or

$$
d S=\frac{1}{\cos \gamma} d A
$$

\Rightarrow

$$
d S=\left(1+\vartheta_{x}^{2}+\vartheta_{y}^{2}\right)^{\frac{1}{2}} d A=\left(1+\vartheta_{x}^{2}+\vartheta_{y}^{2}\right)^{\frac{1}{2}} d x d y=\left(1+\vartheta_{x}^{2}+\vartheta_{y}^{2}\right)^{\frac{1}{2}} d y d x
$$

Notice that $\vartheta=0 \Rightarrow d A=d x d y=d y d x$, as expected. Hence

$$
\iint_{S} f(x, y, z) d S=\iint_{R} f(x, y, \vartheta(x, y))\left(1+\vartheta_{x}^{2}+\vartheta_{y}^{2}\right)^{\frac{1}{2}} d A,
$$

where R is the projection of S onto the x, y-plane.

Example

Find the surface area of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=1$.

Solution:

The surface S projects into the interior of the circle $x^{2}+y^{2}=1$. This is R. Here

$$
z=\vartheta(x, y)=x^{2}+y^{2}
$$

$$
\text { Surface area }=\iint_{S} 1 \cdot d S=\iint_{R}\left(1+\vartheta_{x}^{2}+\vartheta_{y}^{2}\right)^{\frac{1}{2}} d A
$$

Here R is circle $x^{2}+y^{2} \leq 1$. Thus the surface area is given by

$$
S=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d y d x
$$

To evaluate this double integral we shall use polar coordinates. Then

$$
\begin{aligned}
\text { Surface area } & =\iint_{R} \sqrt{4 r^{2}+1} r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{4 r^{2}+1} r d r d \theta \\
& =\left.\frac{1}{8} \int_{0}^{2 \pi} \frac{2}{3}\left(4 r^{2}+1\right)^{\frac{3}{2}}\right|_{0} ^{1} d \theta=\frac{1}{12} \int_{0}^{2 \pi}\left(5^{\frac{3}{2}-1}\right) d \theta=\frac{\pi}{6}(r \sqrt{5}-1)
\end{aligned}
$$

Check: $\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{4 r^{2}+1} r d r d \theta=\frac{5}{6} \sqrt{5} \pi-\frac{1}{6} \pi$

Example

Evaluate

$$
I=\iint_{S} x^{2} y^{2} z^{2} d S
$$

over the curved surface of the cone $x^{2}+y^{2}=z^{2}$ which lies between $z=0$ and $z=1$.

Solution:

Here $z=\vartheta(x, y)=\left(x^{2}+y^{2}\right)^{\frac{1}{2}}$. We need z_{X} and z_{y}. Since $z^{2}=x^{2}+y^{2} \Rightarrow 2 z z_{X}=2 x \Rightarrow z_{X}=\frac{\chi}{z}$ and $z_{y}=\frac{y}{z}$.
Therefore

$$
\left(1+\vartheta_{x}^{2}+\vartheta_{y}^{2}\right)^{\frac{1}{2}}=\left(1+z_{x}^{2}+z_{y}^{2}\right)^{\frac{1}{2}}=\left(1+\frac{x^{2}}{z^{2}}+\frac{y^{2}}{z^{2}}\right)^{\frac{1}{2}}=\left(1+\frac{x^{2}+y^{2}}{z^{2}}\right)^{\frac{1}{2}}=\sqrt{2}
$$

Hence

$$
I=\iint_{S} x^{2} y^{2} z^{2} d S=\iint_{R} x^{2} y^{2}\left(x^{2}+y^{2}\right) \sqrt{2} d x d y .
$$

R is the interior of the circle $x^{2}+y^{2}=1$. Again we use polar coordinates to evaluate I. Then since $z^{2}=r^{2}$ on the cone we have

$$
\begin{aligned}
I & =\iint_{S} x^{2} y^{2} z^{2} d S=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cos ^{2} \theta \cdot r^{2} \sin ^{2} \theta \cdot r^{2} \cdot \sqrt{2} \cdot r d r d \theta \\
& =\frac{\sqrt{2}}{8} \int_{0}^{2 \pi}\left(\cos ^{2} \theta-\cos ^{4} \theta\right) d r d \theta=\frac{\sqrt{2}}{8} \int_{0}^{2 \pi}\left(\frac{1+\cos 2 \theta}{2}-\frac{(1+\cos 2 \theta)^{2}}{4}\right) d \theta \\
& =\frac{\sqrt{2}}{8} \int_{0}^{2 \pi}\left(\frac{1}{2}-\frac{1+\cos 4 \theta}{4}\right) d \theta=\frac{\sqrt{2}}{64} \int_{0}^{2 x}(1-\cos 4 \theta) d \pi=\frac{\pi \sqrt{2}}{32} .
\end{aligned}
$$

Example

Sketch the surface S given by the equation

$$
x+2 y+3 z=6
$$

in the first octant.
$2-\frac{1}{3} x-\frac{2}{3} y$

Find the surface area of S.
Let $S_{x y}$ denote the projection of S onto the x, y-plane. Then $S_{x y}$ is the triangle shown in the first quadrant bounded by the line $x+2 y=6$.
$3-\frac{x}{2}$

$$
\begin{aligned}
& \text { Area }=\iint_{S_{x y}} \sqrt{1+z_{X}^{2}+z_{y}^{2}} d A \\
& \\
& =\iint_{S_{x y}} \sqrt{1+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{2}{3}\right)^{2}} d A \\
& \\
& =\frac{\sqrt{14}}{3} \iint_{S_{x y}} d A=\frac{\sqrt{14}}{3}\left(\frac{1}{2}\right)(6)(3)=3 \sqrt{14}
\end{aligned}
$$

Example Find the surface area of the paraboloid given by $z=4-x^{2}-y^{2}$ for $z \geq 0$.
Sketch the surface.

SOLUTION

The surface is a paraboloid (only the part above the x, y plane):

The formula for its surface area is $\iint_{R} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A$.
Since $z=4-x^{2}-y^{2}$,
$\iint_{R} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A=\iint_{R} \sqrt{1+4 x^{2}+4 y^{2}} d A$
Now the paraboloid intercepts the x, y plane, forming the circle $x^{2}+y^{2}=4$. We have to determine the limits of integration of x and y using this circle. Introduce polar coordinates; then r goes from 0 to 2 and θ goes from 0 to 2π, and the surface-area integral becomes
$\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} r d r d \theta=\frac{17}{6} \pi \sqrt{17}-\frac{1}{6} \pi$.

