
Ma 227 - MULTIPLE INTEGRATION
Remark: The concept of a function of one variable in which y  gx may be extended to two or more
variables. If z is uniquely determined by values of the variables x and y, then we say z is a function of x
and y, and write z  fx,y. Thus for each pair of values x and y in the domain of f, fx,y gives one
value of z.

Double Integrals
Recall that if fx  0 then 

a

b
fxdx represents the area under f between x  a and x  b.

y

x

y=f (x)

a b

Now consider a function fx,y of two variables x and y. Then I   
R

fx,ydA denotes the double

integral over the region R of the function fx,y. Actually when f is positive I is the volume under f
which is enclosed by f, its projection R onto the x,y −plane and the “shell of the projection”.

If we imagine a grid in the x,y −plane then ΔA  ΔxΔy  ΔyΔx and dA  dxdy  dydx 
I   

R
fx,ydxdy   

R
fx,ydydx.
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If we are given the boundaries of R in terms of y as a function of x, i.e.

Then

 
R

fx,ydA  
a

b 
f1x

f2x
fx,ydy dx.

On the other hand if we are given the boundaries of R in a form in which x is a function of y as
indicated below
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Then

 
R

fx,ydA  
c

d 
g1y

g2y
fx,ydx dy

Evaluate  
R

x2y3dA where R is the region contained by the lines x  1,x  2,y  2, and y  3.

 
R

x2y3dA  
2

3 
1

2
x2y3dxdy  

2

3
y3 

1

2
x2dx dy  

2

3
y3 x3

3 1

2
dy

 
2

3
y3 8

3
− 1

3
dy  7

3 2
3

y3dy  7
3

y4

4 2

3
 7

12
34 − 24  455

12

We may also calculate the double integral by integrating with respect to y first
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R

x2y3dA  
1

2 
2

3
x2y3dydx  

1

2
x2 

2

3
y3dy dx  

1

2
x2 y4

4 2

3
dx

 1
4

34 − 24 
1

2
x2dx  65

4
x3

3 1

2
 1

12
658 − 1  455

12

Thus  
R

x2y3dydx   
R

x2y3dxdy. This is true in general. However, one must make sure that the

limits of integration are correct.

Evaluation of Double Integrals
Here are a couple of examples of how one evaluates more complicated double integrals.
Example

Evaluate


1

ln8 
0

lny
exydxdy


1

ln8 
0

lny
exydxdy  

1

ln8 
0

lny
exdx eydy  

1

ln8
ex 0

lnyeydy  
1

ln8
eyy − 1dy  

1

ln8
yeydy − 

1

ln8
eydy

We use integration by parts to evaluate 
1

ln8
yeydy with u  y and dv  eydy


1

ln8 
0

lny
exydxdy  yey 1

ln8 − 
1

ln8
eydy − 

1

ln8
eydy  8 ln8 − e − 2ey|1

ln8  8 ln8 − e − 16  2e  8 ln8  e − 16.

Example
Evaluate


R

x2y3dA

where R is the triangle with vertices at 0,0, 0,1, 1,1.

Solution:
The triangle is shown below.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

We will set up the integration in two ways. Consider first
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R

x2y3dxdy

Taking a horizontal strip parallel to the x −axis we see that x goes from the y −axis to the line x  y,
whereas y goes from 0 to 1. Thus


R

x2y3dxdy  
0

1 
0

y
x2y3dxdy  1

21

If we now consider


R

x2y3dydx

then using a vertical strip parallel to the y −axis we see that y goes from the line y  x to 1. so we have


R

x2y3dydx  
0

1 
x

1
x2y3dydx  1

21

Example
Find the volume of the solid whose base is in the x,y −plane and is the triangle bounded by the x −axis,
the line y  x and the line x  1, while the top of the solid is the plane z  x  y  1.

dV  fx,ydA  x  y  1dxdy  x  y  1dydx

Thus

V   
R

x  y  1dA

where R is the base of the solid which is shown below.
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The boundaries of R are y  0,y  x, and x  1. Hence

V  
0

1 
0

x
x  y  1dydx  

0

1
xy  y2

2
 y

0

x
dx  

0

1
x2  x2

2
 x dx

 
0

1 3
2

x2  x dx  3
2

x3

3
 x2

2 0

1
 1

2
 1

2
 1.

Note that another expression for the volume is

V  
0

1 
y

1
x  y  1dxdy.

Properties of Double Integrals
Double integrals have the same properties as integrals of one variable. For example, if c1 and c2 are
constants, then

 
R
c1fx,y  c2gx,ydA  c1  

R
fx,ydA  c2  

R
gx,ydA.

1 
−1
5 

x−1
x

4xey − 3y sinxdydx 
− 1

2
−32  32e−1  6sin5e−5 − 27cos5e−5 − 16e−6  16e−7  6sin1e−5 − 9cos1e−5

e5

whereas

2 4 
−1
5 

x−1
x

xeydydx  − 8 −2  2e−1 − e−6  e−7 e5

and

3 −3 
−1
5 

x−1
x

y sinxdydx  − 3sin5  27
2

cos5 − 3sin1  9
2

cos1
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Adding the results given by 2 and 3 gives 1 after a bit of algebra.

If R is a closed region which can be decomposed into regions R1 and R2 and f is continuous over R,
then

 
R

fx,ydA   
R1

fx,ydA   
R2

fx,ydA.

Example
Let R be the rectangular region 0 ≤ x,y ≤ 1 shown below consisting of the triangles R1 and R2.

We shall show that


R

x2y3dA  
R1

x2y3dA  
R2

x2y3dA

Now


R

x2y3dA  
0

1 
0

1
x2y3dxdy  1

12
or


R

x2y3dA  
0

1 
0

1
x2y3dydx  1

12

The triangle R1 is given by 0 ≤ x ≤ y, 0 ≤ y ≤ 1 so


R1

x2y3dA  
0

1 
0

y
x2y3dxdy  1

21

or
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R1

x2y3dA  
0

1 
x

1
x2y3dydx  1

21

Triangle R2 is given by 0 ≤ y ≤ x, 0 ≤ x ≤ 1 so


R2

x2y3dA  
0

1 
y

1
x2y3dxdy  1

28

or


R2

x2y3dA  
0

1 
0

x
x2y3dydx  1

28

Finally 1
21

 1
28

 1
12

, which is the result we got before.

Special Case-Area by Integration
The special case of  

R
fx,ydx dx when f  1 is

 
R

dA   
R

dxdy   
R

dydx.

In this case the double integral represents the area of the region R in the x,y −plane.

Area  
a

b 
f1x
f2x dy dx
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Area  
c

d 
g1y

g2y
dxdy

Example

The integral 
0

1 
x2
x

dy dx represents the area of a region of the x,y − plane. Sketch the region and

express the same area as a double integral with the order of integration reversed.

Solution:

The inner integral varies from y  x2 to y  x. Integral gives area of vertical strip between x and x  dx
for values of x from 0 to 1.

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1x

Change order and take integration first. Then x goes from y to y to give a horizontal strip between y
and y  dy. Thus
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0

1 
x2

x
dydx  

0

1 
y

y
dxdy.


0

1 
y

y
dxdy  

0

1
 y − ydy  y

3
2

3
2

− y2

2
|0
1  2

3
− 1

2
 1

6
.

Also


0

1 
x2

x
dydx  

0

1
x − x2dx  1

6
which checks.
Example

Find the area bounded by the parabola y  x2 and the line y  x  2.

0

1

2

3

4

-2 -1 1 2x

Solution:

The parabola and line intersect where y  x2  x  2
 x2 − x − 2  0 or x − 2x  1  0 Thus x  2, x  −1 are the x coordinates of the points of
intersection. x  2  y  4; whereasx  −1  y  1

We shall first find the area as

 
R

dxdy.

When y is between 0 and 1, x goes from − y to y  
0

1 
− y

 y
dx dy

When y is between 1 and 4, x goes from y − 2 to y  
1

4 
y−2

y
dx dy. Thus

A  
0

1 
− y

y
dx dy  

1

4 
y−2

y
dx dy.

We now set up the expression for the area the other way.  
R

dy dx 


−1
2 

x2
x2

dy dx  
−1
2

y|
x2
x2dx  

−1
2
x  2 − x2dx  x2

2
 2x − x3

3
|−1
2
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 2  4 − 8
3
− 1

2
 2 − 1

3
 9 − 9

3
− 1

2
 5 1

2
.

Example
Find the area between the parabola x  y − y2 and the line x  y  0, that is the line y  −x.

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0.5x

Solution:

Now x  y − y2 or x  −y2 − y. Completing the square )  x  −y2 − y  1
4
  1

4
or

x − 1
4
 −y − 1

2
2. Hence the parabola passes through  1

4
, 1

2
. Now x  0  y1 − y  0  y  0

and y  1. Thus the parabola goes through the points 0,0, 0,1, and  1
4

, 1
2
. We now find the

points where the line and the parabola intersect. We have x  y − y2 and x  −y  −y  y − y2 or
0  2y − y2  y2 − y.  y  0 or y  2. The points of intersection are therefore 0,0 and −2,2.
We again set up the expression for area in two ways. First consider

 
R

dxdy.

A  
0

2 
−y

y−y2

dxdy  
0

2
y − y2  ydxdy  

0

2
2y − y2dy  y2 − y3

3
|0
2  4 − 8

3
 4

3
.

Now for

 
R

dydx.

y − 1
2
  1

4
− x on the parabola. Thus

A  
−2

0 
−x

1
4
−x  1

2 dydx  
0

1
4 − 1

4
−x  1

2

1
4
−x  1

2
dydx

Change the order of integration in
0


4 dx 

sinx

cosx
fx,ydy
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0

1
2 dy 

0

sin−1y
fx,ydx   1

2

x
dy 

0

cos−1y
fx,ydx.

Polar coordinates-change of variables
Recall that given a point x,y we may assign to this point new coordinates r, as follows:

x  rcos y  r sin

tan  y
x r  x2  y2

If r   and  are given, then they uniquely determine a point in the x,y −plane. An equation of the
form r  f determines a curve in the x,y −plane. This topic was discussed in Ma 116.
Example

Graph r  sin3

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

-1.0

-0.5

0.5

x

y

r  sin3

Example
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Graph r  4cos

1 2 3 4

-2

-1

0

1

2

x

y

 r2  4rcos  4x. Since r2  x2  y2 so that x2  y2  4x or x2 − 4x  y2  0, which is the circle
x − 22  y2  4 centered at 2,0 with radius 2.

Area Using Polar Coordinates

Recall dA  dx dy . Now from the figure

ΔA  1
2
r  Δr2Δ − 1

2
r2Δ

 1
2
r2  2Δrr  Δr2Δ − 1

2
r2Δ

 ΔrrΔ  1
2
Δr2Δ ≈ rΔrΔ
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dA  rdrd



 
R

fx,ydxdy   
R

Fr,rdrd.

Example
Find the area of the circle x − 22  y2  4.

Solution:

We know that A  r2  4. Using double integration in polar coordinates, we have

A  2 
0


2 

0

4cos
rdrd  2 

0


2 r2

2
|0
4cosd  

0


2 16cos2d

 16 
0


2 1  cos2

2
d  8   sin2

2 0


2  8 

2
 4.

Example
Evaluate 

0

 
0


e−x

2y2dx dy.

Switching to polar coordinates, we have


0


2 

0


e−r

2 cos2r2 sin2rdrd

 
0


2 

0


e−r

2
rdrd  

0


2 −er2

2
|0
d   1

2 0

2 d  

4

Example
i Find the equations in polar coordinates of the curves x2  y2  2y and x2  y2  2x and graph the
curves.

Solution:

The two curves are given by

r  2sin

and

r  2cos

The graphs are given below.
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-1 1 2

-1

1

2

x

y

ii Give an integral or integrals in polar coordinates for the area between the two curves.

Solution:

A  
R

rdrd

where R is the region common to both circles. The two circles intersect when

2cos  2sin

or when

tan  1

That is, at   
4

. r goes from 0 to the circle r  2sin, for 0 ≤  ≤ 
4

and from 0 to r  2cos for

4
≤  ≤ 

2
. Thus we need two integrals to express the area.

A  
0


4 

0

2sin
rdrd   

4


2 

0

2cos
rdrd

 1
2
 − 1

Example
Find the area which lies inside the cardioid r  a1  cos and outside the circle r  a. Use double
integration. The figure below shows the two curves with a  1.

A    rdrd  2 
0


2 

a

a1cos
rdrd  2a2  1

4
a2
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Example
Give an integral in polar coordinates which represents the area of the region R that lies outside the
circle r  a and inside the circle r  2a sin .

Solution:

We must sketch R.
First, x  rcos, y  r sin. Thus the circle r  a is centered at the origin and has radius a.
We rewrite the equation of the other circle.

r2  2ar sin

Thus

x2  y2  2ay

or

x2  y − a2  a2

This circle passes through the origin, is centered on the y-axis at 0,a and has radius a. For
convenience, a  1 in the picture below.

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0.5 1

To find the limits of integration, we have to equate the expressions for the two circles.

a  2a sin  sin  1
2
   

6
, 5

6
, where the circles intercept. So  lies between these two

values. On the other hand, r goes from a to 2a sin for these values of .
The integral for the area is:

 
6

5
6 

a

2a sin
rdrd  1

3
a2  1

2
a2 3

Triple Integrals
We shall now discuss a logical extension of the double integral. Consider

 
V

Fx,y, zdV   
V

Fx,y, zdxdydz   
V

Fx,y, zdydxdz   
V

Fx,y, zdzdxdy   etc.

This is clearly merely an extension of the double integral.
Example
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Evaluate

I  
0

1 
0

1−x 
0

2−x
xyzdzdydx

I  
0

1 
0

1−x 
0

2−x
xyz dz dy dx  

0

1 
0

1−x
xy
2 − x2

2
dy dx

 
0

1 xy22 − x2

4
|y0
y1−xdx  

0

1 1
4

xx − 12x − 22 dx

 1
4 0

1
4x − 12x2  13x3 − 6x4  x5dx  13

240
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Example
Compute the triple integral of Fx,y, z  z over the region in the first octant bounded by the planes
y  0, z  0, x  y  2, 2y  x  6 and the cylinder y2  z2  4.

18



I     zdv  
0

2 
2−y

6−2y 
0

4−y2

zdzdxdy

: 26
3

Volume
The case f  1, i.e.

   dV

is of particular interest. It yields the volume between two surfaces. To see this suppose a region of
x,y, z −space is bounded below by the surface z  f1x,y, above by the surface z  f2x,y and
laterally by a cylinder C with elements parallel to the z axis. Let A denote the region of the x,y −plane
enclosed by the cylinder C.
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Then the volume of the region is

V   
A


f1x,y

f2x,y
dzdydx.

The x and y limits of integration extend over the region A. To get the x,y limits it is usually desirable to
draw the x,y −plane view of the solid. Often one can get the boundary of A by eliminating z from
z  f1x,y and z  f2x,y, i.e. from f1x,y  f2x,y. In the x,y −plane this represents the boundary
of A.
Example

Find the volume bounded by the paraboloid z  2x2  y2 and the parabolic cylinder z  4 − y2.
2x2  y2

Solution:

20



z: From paraboloid to cylinder  2x2  y2 → 4 − y2

y: From 0 to 2 − x2 ; gotten by eliminating z from 2 equations

21



x: From 0 to 2 set; y  0 in x2  y2  2


V  4 
0

2 
0

2−x2


2x2y2

4−y2

dzdydx  4

Example
Find the volume of the solid region D between the parabolic cylinders z  y2 and z  2 − y2 for
0 ≤ x ≤ 3. Sketch D.

Solution:

0

0.5

1

1.5

2

-1.5 -1 -0.5 0.5 1 1.5y1
2

3
x

2 − y2;y2

We obtain the intersection lines of the two surfaces: z1  z2  2 − y2  y2  y  1.
The limits of integration are then: 0 ≤ x ≤ 3; −1 ≤ y ≤ 1;
Then

V  
0

3 
−1

1 
y2

2−y2

dzdydx

 
0

3 
−1

1
2 − y2 − y2 dydx

 
0

3 
−1

1
2 − 2y2 dydx

 8

Cylindrical and Spherical Coordinates
Cylindrical coordinates are related to Cartesian coordinates via

x  rcos y  r sin z  z

The relationship between a volume element in the two systems is

dV  dxdydz → rdrddz,

that is

22



   dV     rdrddz

Spherical coordinates are related to Cartesian coordinates via x,y, z → ,, where

x  cos sin y   sin sin z  cos 0 ≤  ≤ 2 0 ≤  ≤ 

The relationship between a volume element in the two systems is

dV  dxdydz → 2 sinddd,
that is

   dV     2 sinddd.

It is important to keep in mind that  is measured from the z axis and thus varies only from 0 to .
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Example
Find the volume above the cone z2  x2  y2 and inside the sphere x2  y2  z2  2az.
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We shall use spherical coordinates.

Cone: z2  x2  y2

z  cos x  cos sin y   sin sin
The equation of the cone  2 cos2  2 cos2 sin2  2 sin2 sin2 or
cos2  sin2

 tan  1    45°  
4

or   
4
   5

4
.

Sphere: x2  y2  z2 − 2az  0 or x2  y2  z − a2  a2. Center at 0,0,a .


2 − 2acos  0 or   2acos.

We see that  goes from 0 to 
4

, from 0 to 2. and  from 0 to   2acos.

Hence

Volume     2 sindV  
0


4 

0

2acos 
0

2
2 sinddd  a3

Example
Give the expression in cylindrical coordinates for the volume of the solid inside both the cylinder
x2  y2  4 and the ellipsoid 4x2  4y2  z2  64. Sketch the volume. Do not evaluate this
expression.

SOLUTION
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The ellipsoid intersects the x,y-plane in the circle x2  y2  16. Thus, our region is bounded by the
circle x2  y2  4. So , in polar coordinates we have the equation r  2. Next, we can solve the
equation of the ellipsoid 4x2  4y2  z2  64 for z, i.e., z  2 −x2 − y2  16 which can be rewritten

in polar coordinates as z  2 16 − r2 . The volume of the solid can now be written as:

2 
0

2 
0

2 
0

2 16−r2

rdzdrd

Additional Cylindrical and Spherical Coordinates Examples

Example Give an expression in cylindrical coordinates for the volume of the solid T bounded above
by the plane z  y and below by the paraboloid z  x2  y2. Sketch T. Do not evaluate this
integral.

y

Solution: In cylindrical coordinates the plane has the equation z  r sin and the paraboloid has the
equation z  r2. The two surfaces intersect when y  x2  y2, that is the circle x2  y2 − y  0 or

x2  y − 1
2

2
 1

4
. This circle is only in first and second quadrants. The equation of this circle is
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r  sin in polar coordinates.

-0.4 -0.2 0.0 0.2 0.4

0.2

0.4

0.6

0.8

1.0

x

y

Volume  
0

 
0

sin 
r2

r sin
rdzdrd

Example Evaluate


V

cos x2  y2  z2
3
2 dV

where V is the unit ball.
Solution: V is given by x2  y2  z2 ≤ 1. In spherical coordinates the equation for V is   1. Thus


V

cos x2  y2  z2
3
2 dVxyz  

V

cos 2
3
2 2 sindV

 
0

2 
0

 
0

1
cos 3 2 sinddd  4

3
 sin1

Example 1.) Set up, but DO NOT INTEGRATE, a triple integral to find the volume of the solid
bounded above by x2  y2  z2  5 and below by z  1 using spherical coordinates.

Solution: The region of integration is shown below. One uses Plot 3D, Implicit to get the picture.

x2  y2  z2  5

27



 will go from the plane z  1 to the sphere x2  y2  z2  5.

In spherical, x2  y2  z2  5    5

Also, z  1  cos  1    sec.

So, sec ≤  ≤ 5 .

For , we can form a right triangle with hypotenuse 5 (the radius of the sphere) and vertical side 1
which is the distance from the origin to z  1. So the horizontal side is 2.

5  2. 2361
x

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

y

z

Therefore, tan  2    arctan2.
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So, 0 ≤  ≤ arctan2.

The volume is:

V  
0

2 
0

arctan2 
sec

5
p2 sinddd

Surface Integrals

It is often necessary to integrate a function over a curved surface. Such integrals are called surface
integrals.
Let z  x,y describe a particular surface S. Let f  fx,y, z be a given function. We desire to
integrate f over S, i.e. to evaluate

 
S

fx,y, zdS   
S

fx,y,x,ydS.

Here dS comes from dividing S into pieces ΔS.

29



The special case f  1 is of particular interest, since  
S

dS area of curved surface S.

Remark. The case   0, i.e. z  0 corresponds to finding an ordinary double integral since then S is
simply a region in the x,y −plane.

Question: How does one evaluate  
S

f dS?

Suppose S is such that it can be uniquely projected onto the x,y −plane. (We shall discuss the more
general case later.) This is so if every line parallel to the z axis cuts S exactly once. As we take pieces
ΔS smaller and smaller they approach flat pieces tilted with respect to the horizontal.

Now if n is the normal to z  x,y then n  −x i − y j  k . Recall if r is a vector from the origin

to the surface then d r  dx i  dy j  dzk . Then

n  d r  −xdx − ydy  dz.

But z  x,y  dz  xdx  ydy  n  d r  0. Thus n is normal to the surface.

Also n  k  n k cos where  is the angle between the normal and the vertical.
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cos  n  k

n k
 1

1  x
2  y

2
1
2 1

 1  x
2  y

2 − 1
2 .

If dA is the projection onto the horizontal plane dS of then dA  cos dS or

dS  1
cos dA



dS  1  x
2  y

2
1
2 dA  1  x

2  y
2

1
2 dxdy  1  x

2  y
2

1
2 dydx.

Notice that   0  dA  dx dy  dy dx, , as expected. Hence

 
S

fx,y, zdS   
R

fx,y,x,y1  x
2  y

2
1
2 dA,

where R is the projection of S onto the x,y −plane.

Example
Find the surface area of the paraboloid z  x2  y2 below the plane z  1.

Solution:
The surface S projects into the interior of the circle x2  y2  1. This is R. Here
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z  x,y  x2  y2

Surface area   
S

1  dS   
R

1  x
2  y

2
1
2 dA

Here R is circle x2  y2 ≤ 1. Thus the surface area is given by

S   
R

1  4x2  4y2 dydx

To evaluate this double integral we shall use polar coordinates. Then

Surface area   
R

4r2  1 rdrd  
0

2 
0

1
4r2  1 rdrd

 1
8 0

2 2
3

4r2  1
3
2 |0

1d  1
12 0

2
5

3
2
−1 d  

6
r 5 − 1

Check: 
0

2 
0

1
4r2  1 rdrd  5

6
5  − 1

6
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Example
Evaluate

I   
S

x2y2z2dS

over the curved surface of the cone x2  y2  z2 which lies between z  0 and z  1.

Solution:

Here z  x,y  x2  y2
1
2 . We need zx and zy. Since z2  x2  y2  2zzx  2x  zx  x

z and
zy 

y
z .

Therefore

1  x
2  y

2
1
2  1  zx

2  zy
2

1
2  1  x2

z2
 y2

z2

1
2
 1  x2  y2

z2

1
2
 2

Hence

I   
S

x2y2z2dS   
R

x2y2x2  y2 2 dxdy.

R is the interior of the circle x2  y2  1. Again we use polar coordinates to evaluate I. Then since
z2  r2 on the cone we have

I   
S

x2y2z2dS  
0

2 
0

1
r2 cos2  r2 sin2  r2  2  rdrd

 2
8 0

2
cos2 − cos4 drd  2

8 0
2 1  cos2

2
− 1  cos22

4
d

 2
8 0

2 1
2
− 1  cos4

4
d  2

64 0
2x
1 − cos4d   2

32
.

Example
Sketch the surface S given by the equation

x  2y  3z  6

in the first octant.
2 − 1

3
x − 2

3
y
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Find the surface area of S.

Let Sxy denote the projection of S onto the x,y −plane. ThenSxy is the triangle shown in the first
quadrant bounded by the line x  2y  6.
3 − x

2

0 1 2 3 4 5 6
0

1

2

3

x

y

Area   
Sxy

1  zx
2  zy

2 dA

  
Sxy

1  − 1
3

2
 − 2

3
2

dA

 14
3  Sxy

dA  14
3

1
2

63  3 14

Example Find the surface area of the paraboloid given by z  4 − x2 − y2 for z ≥ 0.

Sketch the surface.

SOLUTION

The surface is a paraboloid (only the part above the x,y plane):
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0
-2

2
y

The formula for its surface area is  
R

1  ∂z
∂x

2
 ∂z

∂y

2
dA.

Since z  4 − x2 − y2,

 
R

1  ∂z
∂x

2
 ∂z

∂y

2
dA   

R
1  4x2  4y2 dA

Now the paraboloid intercepts the x,y plane, forming the circle x2  y2  4.
We have to determine the limits of integration of x and y using this circle.
Introduce polar coordinates; then r goes from 0 to 2 and  goes from 0 to 2,
and the surface-area integral becomes


0

2 
0

2
1  4r2 rdrd  17

6
 17 − 1

6
.
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