Ma 227 - MULTIPLE INTEGRATION

Remark: The concept of a function of one variable in which y = g(x) may be extended to two or more
variables. If z is uniquely determined by values of the variables x and y, then we say z is a function of x
and y, and write z = f(x,y). Thus for each pair of values x and y in the domain of f, f(x,y) gives one
value of z.

Double Integrals
Recall that if f(x) > 0 then jzf(x)dx represents the area under f between x = aand x = b.

yt y=f(x)

Now consider a function f(x,y) of two variables x and y. Then | = ”f(x,y)dA denotes the double
R

integral over the region R of the function f(x,y). Actually when f is positive | is the volume under f
which is enclosed by f, its projection R onto the x,y —plane and the “shell of the projection”.

If we imagine a grid in the x,y —plane then AA = AxAy = AyAx and dA = dxdy = dydx =
| = [ [f(x,y)dxdy = [ [ f(x,y)dydx.
R R
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If we are given the boundaries of R in terms of y as a function of x, i.e.

ﬁY:fz(Kj

o — —

e

Then
ij(x, y)dA = j:[j:jg; f(x, y)dy]dx.
R

On the other hand if we are given the boundaries of R in a form in which x is a function of y as
indicated below



y=d
x=g,(y)
R x=g,(y)
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Then

[ j f(x,y)dA = j [ [ 920 o y)dx]dy

Evaluate ”xzy3dA where R is the region contained by the linesx = 1,x = 2,y = 2,andy = 3
R

IixzysdA:IzjiXZVSdXdy J' U XZdX:|dy I [%Tdy

3
38 Ay - 2 (Pvagy - 2l YT L 7 a4 o4y _ 455
_2y|:3 3}dy‘3jgydy‘3[4L‘12[3 27 =

We may also calculate the double integral by integrating with respect to y first



I£x2y3dA = jij‘z x2y3dydx = J‘ixz[jg y3dy}dx = jixz[% de

2
s e {2 T - e - 43

Thus ”R x2y3dydx = ”R x2y3dxdy. This is true in general. However, one must make sure that the
limits of integration are correct.

Evaluation of Double Integrals
Here are a couple of examples of how one evaluates more complicated double integrals.

Example
Evaluate
Ing ¢l
J. 1n J. onyex+dedy
In8 clny B In8 o Iny In8 B In8 In8
-[1 -[o eﬂ’dxdy—j1 U dx}eydy _[ ydy—jl ey[y—l]dy—j1 yeydy—j1 eYdy

We use integration by parts to evaluate j 1 yeydy withu = y and dv = e¥dy

Ing I Ing In8
Iln Ionyex+ydxdy:[yey]'lns—jln eydy—J.ln eYdy = 8In8 —e —2¢Y|!"8 = 8In8—e - 16+ 2e = 8In8 + e — 16.

Example
Evaluate
2,3
X“ydA
[Ty
where R is the triangle with vertices at (0,0), (0,1),(1,1).
Solution:
The triangle is shown below.
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We will set up the integration in two ways. Consider first



”R x2y3dxdy

Taking a horizontal strip parallel to the x —axis we see that x goes from the y —axis to the line x =y,
whereas y goes from 0 to 1. Thus

ey
2,3 _ 2,3 _ 1
IIRX y2dxdy = IOIOX y2dxdy = 51
If we now consider
2,3
HRX y2dydx
then using a vertical strip parallel to the y —axis we see that y goes from the liney = x to 1. so we have
1,1
2,3 _ 2,3 _ 1
J.J‘Rx ydydx = Iojxx ydydx = 51

Example

Find the volume of the solid whose base is in the X,y —plane and is the triangle bounded by the x —axis,
the line y = x and the line x = 1, while the top of the solid is the planez = x +y + 1.
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dVv = f(x,y)dA = (x+y+ 1)dxdy = (x +y + 1)dydx
Thus

V=jju+y+1mA
R

where R is the base of the solid which is shown below.
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The boundaries of Rarey = 0,y = X, and x = 1. Hence

1 1 2 X 1
V:J. Ix(x+y+1)dydx:_|‘0[xy+—+y} dx:J. [x2+%+x]dx

2
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Note that another expression for the volume is
V= Il ‘1(x+ + 1)dxd
O y y y'

Properties of Double Integrals

Double integrals have the same properties as integrals of one variable. For example, if c1 and ¢ are
constants, then

H[clf(x,y) +C20(x,Y)]dA = c1 [ [f(x,y)dA + ¢ [ [ g(x,y)dA.
R R

1) j j L (4xeY = 3ysinx)dydx =
= 1( 32+32e71 +6(sin5)e™> — 27(cos5)e > — 16670 + 1667 + 6(sin1)e=> — 9(cos1)e~>)
5
e

whereas
(2) 4.[: ,fz_l xeYdydx = — 8(—2 el _g6 e‘7>e5
and

(3) _3ﬁ1f ysinxdydx = —3sin5+ 2-cos5 - 3sin1 + 3 cos1



Adding the results given by (2) and (3) gives (1) after a bit of algebra.

If R is a closed region which can be decomposed into regions R; and R, and f is continuous over R,
then

[ [ y)dA = [ [ f(x,y)dA + [ [ f(x,y)dA.
R R1 Rz
Example

Let R be the rectangular region 0 < x,y < 1 shown below consisting of the triangles R1 and R».

ks

We shall show that
”R x2y3dA = ”Rl x2y3dA + '”Rz x2y3dA

Now

”R x2y3dA = Ig I(l) x2y3dxdy = 1—12
or

”R x2y3dA = J.cl) j(l) x2y3dydx 112

The triangle Rq isgiven by 0 <x <y,0 <y <1s0

”Rl x2y3dA = J.(l) J-Z x2y3dxdy = 2—11

or



”Rl x2y3dA = j(l) Jj x2y3dydx = 2—11

Triangle Ry isgiven by 0 <y <x,0 <x < 1so0
11
2y34A — 2,3 -1
”sz y dA—J.OJ.yx y dxdy = 58
or
1 px
2y3dA — 23 _ 1
”sz y dA—joij yodydx = 28

L1 L \which is the result we got before.

Finally > T 38 T ip

Special Case-Area by Integration
The special case of [ [ f(x,y)dx dx when f = 1is
R

JidA - J.idxdy - Jidydx.

In this case the double integral represents the area of the region R in the X,y —plane.

— y=1,(x)

Area = jb jfZ(X) dy dx

a'f1(x)

¥



%= g, (y)

3

d r92(y)
Area = _[C J.gl(y) dxdy

Example
The integral jé jiz dy dx represents the area of a region of the x,y — plane. Sketch the region and
express the same area as a double integral with the order of integration reversed.
Solution:

The inner integral varies fromy = x2 toy = x. Integral gives area of vertical strip between x and x + dx
for values of x from 0 to 1.

127

0.87
0.617
0.41

0.21
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Change order and take integration first. Then x goes fromy to /y to give a horizontal strip between y
and y + dy. Thus



Also
J.; I:z dydx = I(l)(x —x2)dx = %

which checks.
Example
Find the area bounded by the parabolay = x2 and the liney = x + 2.

Solution:
The parabola and line intersect where y = x2 = x + 2

= X2 —-x-2=00r (x—2)(x+1) =0Thusx = 2, x = —1 are the x coordinates of the points of

intersection. x =2 = y = 4; whereasx = -1 => y=1

We shall first find the area as

I i dxdy.

When y is between 0 and 1, x goes from - /y to jy = fé E,/\/; dx dy

When'y is between 1 and 4, x goes fromy —2to jy = f‘l" j;/_vz dx dy. Thus

A:féj:/jvdxdy+ji.[)‘//_y2dxdy.

We now set up the expression for the area the other way. ”dy dx =
R

2 (x42 2 2 2 3
j_l j;(; dy dx = j_l y|¥32dx = j_l(x +2—x2)dx = £- +2x - X2

10
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2+4 2+2 3 9 T =905
Example

Find the area between the parabola x = y — y2 and the line x +y = 0, that is the liney = —x.

715

10.5
2 15 x—l -0.5 0.5
1-0.5
1
Solution:
Now X =y—y2orx = —(y? —y). Completing the square ) = x = —(y2 —y + ) + ¢ or
X— 4 = —(y - 3)2. Hence the parabola passes through (4, 3). Nowx = 0 = y(1 y)=0=y=0

and y = 1. Thus the parabola goes through the points (0, 0), (0, 1) and ( ) We now flnd the

points where the line and the parabola intersect. We have x = y —y2 and x = —y :> —y=y-y2or
0=2y-y2=y(@2-y). > y=_0ory = 2. The points of intersection are therefore (0,0) and (-2, 2).

We again set up the expression for area in two ways. First consider

I I dxdy.

y-y?
A= II dedy = [ (y-y2 +ypaudy = [y -yt =y2- Lp=a-8 = &

Now for

Iidydx.

y- 4 =+ [+ —xon the parabola. Thus

J>IH

A= I g | IJjZ—%dydx

COSX

Change the order of integration mj dxj f(x y)dy

11
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Polar coordinates-change of variables
Recall that given a point (x,y) we may assign to this point new coordinates (r, ) as follows:

X = rcosé

tanf = ¥ r=[x2+y2

If r > 0 and 0 are given, then they uniquely determine a point in the x,y —plane. An equation of the

form r = f(@) determines a curve in the (x,y) —plane. This topic was discussed in Ma 116.
Example

Graph r = sin36

y = rsinf

-08 -06 -04 -0.2 02 04 06 08

-05 T

r =sin30

Example

12



Graph r = 4cos6

= 12 = 4rcosd = 4x. Since r2 = x2 + y2 so that x2 + y2 = 4x or x2 — 4x + y2 = 0, which is the circle
(x —2)2 +y2 = 4 centered at (2,0) with radius 2.

Area Using Polar Coordinates

AT

Al

Recall dA = dx dy . Now from the figure
AA = %(r +A1)2A0 - %rZAQ
= %(r2 + 2T + Ar?)Af — %rZAQ

— ATrAO + %ArZAQ ~ rATA0

13



dA = rdrd6
=
[ [fcyydxdy = [ [ Fr,0yrdrdo.
R R
Example
Find the area of the circle (x — 2)2 + y2 = 4.
Solution:

We know that A = zr2 = 4z. Using double integration in polar coordinates, we have

I 4cos0 I 2 I
_ 2 _ 2 I“j4cosfqg — | 2 2
A= 2[0 jo rdrdg = zjo - [3e0do jo [16 c0s26]d6

- 16]0%(—1“20529 )do — 8 0+ SIN20 ]07 -8 Z ] -4

Example
00 0O —(x2+y2)
Evaluate -[0 Io e dx dy.
Switching to polar coordinates, we have

I H Iw e—(r2cos20+r2sin%0) 4 rdo
- Jg [yertnanan = [T ogigo0 = o g [Fao- %

Example

(i) Find the equations in polar coordinates of the curves x2 +y2 = 2y and x2 + y2 = 2x and graph the
curves.

Solution:
The two curves are given by
r=2sin6

and

r =2cosh
The graphs are given below.

14



(ii) Give an integral or integrals in polar coordinates for the area between the two curves.

Solution:
A= J.J.R rdrdo
where R is the region common to both circles. The two circles intersect when
2cos0 = 2sin6
or when
tang =1

That is, at @ = 2. r goes from 0 to the circle r = 2sin6, for0 < 8 < Z and from 0 to r = 2cos# for

4
L <p< % Thus we need two integrals to express the area.

4
L 2sing 5 c2c0s6
A= [T oo [ 2 [0 rara

g4
4

-1,

2
Example

Find the area which lies inside the cardioid r = a(1 + cos@) and outside the circle r = a. Use double
integration. The figure below shows the two curves with a = 1.

rdrdd = 2a2 + La?z
a 4

I % J« a(1l+cos®)

A:jjrdrdB:Z 0

15



Example

Give an integral in polar coordinates which represents the area of the region R that lies outside the
circle r = a and inside the circle r = 2asiné .

Solution:
We must sketch R.
First, x = rcos®, y = rsinf. Thus the circle r = a is centered at the origin and has radius a.
We rewrite the equation of the other circle.

r2 = 2arsinf
Thus

X2 +y2 = 2ay
or

x2 +(y—a)? = a2

This circle passes through the origin, is centered on the y-axis at (0,a) and has radius a. For
convenience, a = 1 in the picture below.

15

-05 0 0.5
0.5

To find the limits of integration, we have to equate the expressions for the two circles.
a = 2asinfd =>sinf = % =0 = % STﬂ where the circles intercept. So 6 lies between these two
values. On the other hand, r goes from a to 2asin @ for these values of 6.

The integral for the area is:

3L .2asing
IG J.asm rdrdd = %a2n+%a2,/§
a

ols

Triple Integrals
We shall now discuss a logical extension of the double integral. Consider

IIIF(X, y,2)dV = IIIF(X, y,z)dxdydz = III F(x,y,z)dydxdz = IIIF(x,y, Z)dzdxdy = --- etc.
% % % %

This is clearly merely an extension of the double integral.
Example

16



Evaluate
| = jg I;_X I s—x xyzdzdydx

[1)({]. xyzdz}dy}dx_ [ Xy 2-07 X)Z y}d

J.; w22=x? (24 x)? )= 1_de ='|. [lx(x—l)z(x—Z)z]dx

_1 2 3 4 45 13
= '[(4x 12x4 + 13x° — 6x x)dx—240

17



Example

Compute the triple integral of F(x,y,z) = z over the region in the first octant bounded by the planes
y=0, z=0, X+y=2, 2y+x=6andthecylindery?+z2=4.

Xty =g

18
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Volume
Thecase f = 1, i.e.

J[Jov

is of particular interest. It yields the volume between two surfaces. To see this suppose a region of

X, Y,z —space is bounded below by the surface z = f1(x,y), above by the surface z = f»(x,y) and
laterally by a cylinder C with elements parallel to the z axis. Let A denote the region of the x,y —plane
enclosed by the cylinder C.

19
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Then the volume of the region is

fo(xy)
—”J.fixzdddx

The x and y limits of integration extend over the region A. To get the x,y limits it is usually desirable to
draw the x,y —plane view of the solid. Often one can get the boundary of A by eliminating z from

z =f1(x,y)and z = fo(X,y), i.e. from f1(X,y) = f2(x,y). In the x,y —plane this represents the boundary
of A.

Example
Find the volume bounded by the paraboloid z = 2x2 + y2 and the parabolic cylinder z = 4 — y2.
2x2 +y?2
Solution:

20



(0.0 4]
(120,41

y 7

(0.2.4]

[0.42.2)

[0.2.0] Y

KZHye=2,2=10

z: From paraboloid to cylinder = 2x2 +y2 » 4 —y?
y: From 0 to /2 — x2 ; gotten by eliminating z from 2 equations

21



x: From0to y2 set;y = 0inx2 +y2 = 2

=

J2 p2x2 c4-y2
V= 4Io Io -[2x2+y2 dzdydx = 4n
Example

Find the volume of the solid region D between the parabolic cylinders z = y2 and z = 2 — y2 for
0 < x < 3. Sketch D.

Solution:
Y
2- y2;y2

We obtain the intersection lines of the two surfaces: zq = zp = 2—y2 = y2 =>y = +1.
The limits of integration are then: 0 < x < 3; -1 <y <1;

Then
v T e
- jzﬁl[(z —y2) —y2 Jdydx
- jz j: (2 - 2y%) dydx

=8

Cylindrical and Spherical Coordinates
Cylindrical coordinates are related to Cartesian coordinates via

X=rcosf y=rsing z=12
The relationship between a volume element in the two systems is

dV = dxdydz - rdrdfdz,
that is

22



[[[av=][]rdrdodz

& r.s
[®y.2) or
T irae z
z
4
r
3

Spherical coordinates are related to Cartesian coordinates via x,y,z - p,0, ¢ where

X = pcosfsing y=psinfsing z=pcos¢ 0<0<2r 0<¢p<n
The relationship between a volume element in the two systems is
dV = dxdydz - p2sin¢dpdode,

I”dV = IIIPZSin¢dpd9d9.

It is important to keep in mind that ¢ is measured from the z axis and thus varies only from 0 to .

that is

23



Example
Find the volume above the cone z2 = x2 + y2 and inside the sphere x2 + y2 + z2 = 2az.

24



We shall use spherical coordinates.

Cone: 72 = x2 +y?2

Z=pCcos¢ X = pcoshsing y = psinfsing
The equation of the cone = p2cos2¢ = p2cos20sin?¢ + p2sinHsin¢ or
cos2¢ = sin?¢

>tang =1 = ¢ = +45° :% or¢:%+n:§T”.

Sphere: x2 +y2 +z2 —2az = 0 orx? +y2 + (z—a)? = a2. Centerat (0,0,a) .
=
p2 —2apcos¢ =0 or p = 2acos¢.
We see that ¢ goes from 0 to %, 0 from 0 to 2z. and p from O to p = 2acos ¢.
Hence

Volume = J.J.J.pzsinqﬁdvpeqb - J.o% J'zacos«pj‘z” p2sin¢dddpdg = 7ad

Example

Give the expression in cylindrical coordinates for the volume of the solid inside both the cylinder
x2 +y2 = 4 and the ellipsoid 4x2 + 4y2 + z2 = 64. Sketch the volume. Do not evaluate this
expression.

SOLUTION

25
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The ellipsoid intersects the x, y-plane in the circle x2 + y2 = 16. Thus, our region is bounded by the
circle x2 +y2 = 4. So, in polar coordinates we have the equation r = 2. Next, we can solve the

equation of the ellipsoid 4x2 + 4y2 + 72 = 64 forz, i.e., z = +2,/-x% —y2 + 16 which can be rewritten
in polar coordinates as z = #2416 — r2 . The volume of the solid can now be written as:

2| E” [ s jgzm rdzdrdo

Additional Cylindrical and Spherical Coordinates Examples

Example Give an expression in cylindrical coordinates for the volume of the solid T bounded above
by the plane z = y and below by the paraboloid z = x2 + y2. Sketch T. Do not evaluate this
integral.

Solution: In cylindrical coordinates the plane has the equation z = rsin8 and the paraboloid has the
equation z = r2. The two surfaces intersect when y = x2 + y2, that is the circle x2 +y2 —y = 0 or

X2 + (y - %) = %. This circle is only in first and second quadrants. The equation of this circle is

26



r = siné in polar coordinates.

} +—
0.4
X

ing crsind
Volume = J.Z Izln I:jm rdzdrdo

Example Evaluate
J‘” cos(x% +y? +22) Tav
Y

where V is the unit ball.
Solution: V is given by x2 + y2 + z2 < 1. In spherical coordinates the equation for V is p = 1. Thus

IU[COS(XZ +y? +22) ]%deyz = J‘” cos(p?) %pz singdV y94
Vv v

B Lf”JZ j; cos(p®) p?sing¢dpdgdo = %nsinl

Example 1.) Setup, but DO NOT INTEGRATE, a triple integral to find the volume of the solid
bounded above by x2 +y2 +22 = 5 and below by z = 1 using spherical coordinates.

Solution: The region of integration is shown below. One uses Plot 3D, Implicit to get the picture.
x2+y24+z2=5

27



p will go from the plane z = 1 to the sphere x2 + y2 +z2 = 5.
In spherical, X2 +y2+22 =5= p =5

Also, Zz=1= pcos¢p =1 = p = secy.
So, secp < p<.5.

For ¢, we can form a right triangle with hypotenuse J/5 (the radius of the sphere) and vertical side 1
which is the distance from the originto z = 1. So the horizontal side is 2.

J5 =2.2361
X

1.0

04T

02T

0.0 —tt -
0.0 0.2 0.4 0.6 0.8 1.0 12 14 1.6 18 2.0

Therefore, tan¢g = 2 = ¢ = arctan2.

28



So, 0 < ¢ < arctan2.
The volume is:
2n parctan2 ¢4/5
V= 2sin ¢dpd¢de
J‘O J-O J‘sec¢p singdpdg

Surface Integrals

It is often necessary to integrate a function over a curved surface. Such integrals are called surface
integrals.

Let z = 3(x,y) describe a particular surface S. Let f = f(x,y,z) be a given function. We desire to
integrate f over S, i.e. to evaluate

[ [ty 2008 = [ [fix,y, 9x,y)ds.
S S

Here dS comes from dividing S into pieces AS.

29



The special case f = 1 is of particular interest, since ”dS =area of curved surface S.
S

Remark. The case 9 = 0, i.e. z = 0 corresponds to finding an ordinary double integral since then S is
simply a region in the x,y —plane.
Question: How does one evaluate | [ f dS?

S
Suppose S is such that it can be uniquely projected onto the x,y —plane. (We shall discuss the more
general case later.) This is so if every line parallel to the z axis cuts S exactly once. As we take pieces
AS smaller and smaller they approach flat pieces tilted with respect to the horizontal.

Now if & is the normal to z = 9(x,y) then & = —9x 1 — SyT + K. Recall if T is a vector from the origin
to the surface then d7 = dxi + dyT + dzK. Then

- d?P = —9xdx — Gydy + dz.
Butz = 3(x,y) = dz = 9xdx + 9ydy = W - dT = 0. Thus T is normal to the surface.
AlsoT - K = I |F)| cosy where v is the angle between the normal and the vertical.

=

30
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1
EE, = 1 T = (1+9%+99) 2.
|n||k| (1+9¢+99)2 41

If dA is the projection onto the horizontal plane dS of then dA = cosy dS or

__1

cosy =

1 1 1
dS = (1+9%+99)2dA = (1+9%+95) 2dxdy = (1+ 9% + 99) 2 dydx.
Notice that 3 = 0 = dA = dx dy = dy dx,, as expected. Hence

fx,y,2)d5 = [ [fx,y, 90 Y))(L + 92 + 93) 2 dA,
I /] ;
S R

where R is the projection of S onto the x,y —plane.

4 R
2 “\\_%_)
Example

Find the surface area of the paraboloid z = x2 + y2 below the plane z = 1.

Solution:
The surface S projects into the interior of the circle x2 + y2 = 1. This is R. Here

31



z=9(x,y) = x%+y?

Surface area = ”1 .dS = ”(1 + 9% + 9%)%dA
S R

il

3

Here R is circle x2 + y2 < 1. Thus the surface area is given by

S = J‘_[ J1+4x? + 4y? dydx
R
To evaluate this double integral we shall use polar coordinates. Then

Surface area = _” Jar2 + 1rdrdg = JS” J.(l) Jar2 + 1 rdrdd
R

g g S 1 (23,
‘§Jo 5(4r2+1)z|gd0_§j0 (52 )de—%(rﬁ—l)

Check: jé” fé J4r2 + 1rdrdd = %ﬁn - %7{

32



Example
Evaluate

| = Iszyzzzds
S

over the curved surface of the cone x2 + y2 = z2 which lies betweenz = 0 and z = 1.
Solution:

1
Herez = 9(x,y) = (x2 +y?) 2. We need zx and zy. Since z2 = x2 +y? = 2zzx = 2x = zx = % and

Zy = 5.
Therefore

1 1

1 1 5 2\ 7% 2,2\ 7%
(1+9>2<+932/)§ =(l+2>2<+z)2/)% :(1+X—2+y—2>2 :<1+X Y )2 =2
2z

Hence
= J. jx2y222ds = Iszyz(xz +y2) /2 dxdy.
S R

R is the interior of the circle x2 + y2 = 1. Again we use polar coordinates to evaluate |. Then since
z2 = r2 on the cone we have

2r 01
_ 225243 — 200220 « r2<in20 . r2 . .
I—“S.xyzdS—I0 Ior c0s460 - r<sin<f - r< « y2 - rdrdd

2 2 2
% J.O”(cosze — c0s*0)drdf = J2 J. ﬂ( 1+cos2 _ (1+00520) )de

8 Jo 2 4
_ V2 (21 14c0s40 \gy o A2 [ _ my2
=g [y (3 - 4540 )do = - [ (@ - cosdoydr = 5=
Example
Sketch the surface S given by the equation

X+2y+32=06

in the first octant.
1y_2
2-3X=3Y
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Find the surface area of S.
Let Sxy denote the projection of S onto the X,y —plane. ThenSyy is the triangle shown in the first
quadrant bounded by the line x + 2y = 6.
3_ X
2

Area=_”s J1+2% +25 dA
Xy
g () (B) e

Tt —

Example Find the surface area of the paraboloid given by z = 4 — x2 —y2 for z > 0.

Sketch the surface.

SOLUTION
The surface is a paraboloid (only the part above the X,y plane):
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2
The formula for its surface area is ”R Jl + (%)2 + (S—;) dA.

Sincez = 4 — x2 —y2,

2\2, (a2 ya - 21 4y2

ijJ1+(6X) +(ay) dA =[] J1+ a2+ 2y7 dA

Now the paraboloid intercepts the x,y plane, forming the circle x2 + y2 = 4.
We have to determine the limits of integration of x and y using this circle.

Introduce polar coordinates; then r goes from 0 to 2 and 6 goes from 0 to 27,
and the surface-area integral becomes

[ [aJ1+ar?rdrdo = 217 - Lo
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