Ma 227 - Fall 2013 - Exam II Review

Operations relating to vector functions (fields)
Gradient $\mathbf{F}=\nabla f$ (input scalar, output vector)
Divergence $\nabla \bullet \mathbf{F}$ (input vector, output scalar)
Curl $\nabla \times \mathbf{F}$ (input vector, output vector)

Line integral with respect to arc length $\int_{C} \mathbf{f} \mathbf{d s}$
Parametrize C
Set up and evaluate in 2 or 3 dimensions

$$
\begin{gathered}
\int_{C} f d s=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t \\
\int_{C} f d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
\int_{C} f d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
\end{gathered}
$$

Line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$
Parametrize C
Set up and evaluate in 2 or 3 dimensions

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d \mathbf{r}}{d t} d t
$$

Independence of path: $\mathbf{F}=\nabla \phi$
Test: curl $\mathbf{F}=\nabla \times \mathbf{F}=\mathbf{0}$
Determination of ϕ

Green's Theorem (in the plane)

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\oint_{\partial D} P d x+Q d y \text { with the direction around the boundary chosen so }
$$ that the region D is to the left as the boundary is traversed.

Corollary - Area of a region D in the plane

$$
\operatorname{Area}(D)=\frac{1}{2} \oint_{\partial D} x d y-y d x
$$

