Selected problems

2009, 2010 & 2011 Ma 227 Final Exams

Surface Integrals, Stokes's Theorem, Divergence Theorem

2011 Problem 3

Evaluate the surface integral

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} dS$$

where *S* is the surface of the portion of the cone $z^2 = x^2 + y^2$ in the first octant and below the plane z = 4 with downward (outward) normal and

$$\vec{F} = yz\vec{i} + xz\vec{j} + xy\vec{k}.$$

2010 problem 4b

Evaluate the surface integral $\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} dS$ for $\vec{F} = z\vec{i} + x\vec{j} + y\vec{k}$ with *S* the triangle with vertices (1,0,0), (0,2,0) and (0,0,3) oriented upward.

2009 problem 4

a) (**10 points**) Evaluate

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} dS$$

where

$$\vec{F} = x^2 z^3 \vec{i} + 2xyz^3 \vec{j} + xz^4 \vec{k}$$

and S is the surface of the box with vertices $(\pm 1, \pm 2, \pm 3)$.

b) (15 points)

Evaluate

$$\iint\limits_{S} \vec{F} \cdot d\vec{S} = \iint\limits_{S} \vec{F} \cdot \vec{n} dS$$

where

$$\vec{F} = x^2 \vec{i} + xy \vec{j} + z \vec{k}$$

and S is the portion of the paraboloid $z = x^2 + y^2$ below z = 1, oriented with the normal pointing downward.

2011 Problem 5

a) (13 points)

Use Stokes' Theorem to evaluate

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S}$$

where $\vec{F} = z^2 \vec{i} - 3xy \vec{j} + x^3 y^3 \vec{k}$ and *S* is the part of $z = 5 - x^2 - y^2$ above the plane z = 1. Assume *S* is oriented upwards.

b) (12 points)

Use the divergence theorem to evaluate

$$\iint_{S} \vec{F} \cdot d\vec{S}$$

where $\vec{F} = xy\vec{i} - \frac{1}{2}y^2\vec{j} + z\vec{k}$ and the surface *S* consists of the three surfaces, $z = 4 - 3x^2 - 3y^2$, $1 \le z \le 4$, on the top, $x^2 + y^2 = 1$, $0 \le z \le 1$ on the sides, and z = 0 on the bottom.

2010 problem 5

(25 points)

Verify the Divergence Theorem for the vector field $\vec{F} = y\vec{i} + yz\vec{j} + z^2\vec{k}$ where *S* is the surface of the solid *E* bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and z = 5.a) (15 points)

2009 problem 5

Verify Stokes' Theorem for the vector field $\vec{F} = -y\vec{i} + 2x\vec{j} + (z+x)\vec{k}$ over the upper hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 1$, oriented by the outward pointing normal \vec{n} .