Selected problems

2009, 2010 \& 2011 Ma 227 Final Exams

Surface Integrals, Stokes's Theorem, Divergence Theorem

 2011 Problem 3Evaluate the surface integral

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S
$$

where S is the surface of the portion of the cone $z^{2}=x^{2}+y^{2}$ in the first octant and below the plane $z=4$ with downward (outward) normal and

$$
\vec{F}=y z \vec{i}+x z \vec{j}+x y \vec{k}
$$

2010 problem 4b

Evaluate the surface integral $\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S$ for $\vec{F}=z \vec{i}+x \vec{j}+y \vec{k}$ with S the triangle with vertices $(1,0,0),(0,2,0)$ and $(0,0,3)$ oriented upward.

2009 problem 4

a) (10 points)

Evaluate

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S
$$

where

$$
\vec{F}=x^{2} z^{3} \vec{i}+2 x y z^{3} \vec{j}+x z^{4} \vec{k}
$$

and S is the surface of the box with vertices $(\pm 1, \pm 2, \pm 3)$.
b) (15 points)

Evaluate

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S
$$

where

$$
\vec{F}=x^{2} \vec{i}+x y \vec{j}+z \vec{k}
$$

and S is the portion of the paraboloid $z=x^{2}+y^{2}$ below $z=1$, oriented with the normal pointing downward.

2011 Problem 5

a) (13 points)

Use Stokes' Theorem to evaluate

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}
$$

where $\vec{F}=z^{2} \vec{i}-3 x y \vec{j}+x^{3} y^{3} \vec{k}$ and S is the part of $z=5-x^{2}-y^{2}$ above the plane $z=1$. Assume S is oriented upwards.

b) (12 points)

Use the divergence theorem to evaluate

$$
\iint_{S} \vec{F} \cdot d \vec{S}
$$

where $\vec{F}=x y \vec{i}-\frac{1}{2} y^{2} \vec{j}+z \vec{k}$ and the surface S consists of the three surfaces, $z=4-3 x^{2}-3 y^{2}, 1 \leq z \leq 4$, on the top, $x^{2}+y^{2}=1,0 \leq z \leq 1$ on the sides, and $z=0$ on the bottom.

2010 problem 5

(25 points)

Verify the Divergence Theorem for the vector field $\vec{F}=y \vec{i}+y z \vec{j}+z^{2} \vec{k}$ where S is the surface of the solid E bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $z=5 . a)$ (15 points)

2009 problem 5

Verify Stokes' Theorem for the vector field $\vec{F}=-y \vec{i}+2 x \vec{j}+(z+x) \vec{k}$ over the upper hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 1$, oriented by the outward pointing normal \vec{n}.

