
MA227 Surface Integrals

Parametrically Defined Surfaces
We discussed earlier the concept of  

S
fx,y, zds where S is given by

z  x,y . We had

 
S

fds   
R

fx,y,x,y1  x
2  y

2
1
2 dA

where R is the projection of S onto the x,y - plane. We shall now develop a generalization of this
concept.

There are three common ways of defining a surface:

I.

z  x,y     1
as above. Here  must be a single-valued, continuous function defined on a region of the plane.

II. Often surfaces are represented by equations of the form

Fx,y, z  0     2

If x0,y0, z0 is a point on such a surface, we can in many cases represent the portion of the surface
near x0,y0, z0 in a form analogous to 1 by solving 2 for x,y, or z in terms of the other two
variables.

III. It is frequently convenient to describe a surface by a parametric representation.

Example:

x  a sinucosv y  a sinu sinv. z  acosu

Here u and v are independent parameters. This represents a sphere whose equation is

x2  y2  z2  a2

This equation is gotten by elimination of u and v. Note that u and v are the spherical coordinates  and
 respectively.

The set of equations

x  xu,v y  yu,v z  zu,v     3

where u and v are parameters represents an arbitrary surface. This can be seen by eliminating u and v
from 3, a procedure that leads to an equation of the form Fx,y, z  0 which is case II.

In terms of the radius vector r  x i  y j  zk equation (3) for the surface may be written as
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r  r u,v  xu,v i  yu,v j  zu,vk

From the parametric equations for a surface it is possible to establish a formula for ds, the element of
surface area. In general, ds is obtained by calculating the area between the curves corresponding to:

u  u0, u  u0  du, v  v0andv  v0  dv.

For infinitesimal areas this element will be essentially planar and have area ds  |AB  AC| , where the
vectors are the sides of the differential parallelogram shown in the diagram.

A  r u0,v0

B  r u0  du,v0  r u0,v0  ∂ r
∂u u0,v0du 

C  r u0,v0  dv  r u0,v0  ∂ r
∂v u0,v0dv 

Thus

AB  ∂ r
∂u du AC  ∂ r

∂v dv



ds  | ∂ r
∂u  ∂ r

∂v |dudv
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Hence, in general, we have for a surface given by

x  xu,v y  yu,v z  zu,v

that

 
S

fx,y, zds   
G

fu,v| r u  r v|dudv,

where G is the image of the surface S in the u,v -plane.

Suppose the surface S is given by the representation z  x,y (case I). Let

x  u, y  v  z  u,v

Then

r u,v  u i  v j  u,vk

also represents the surface. Thus

r u  i  u k ; r v  j  v k ;

and

ru  rv  k − ui− vj

so

ds  | r u  rv|dudv  1  u
2  v

2
1
2 dudv

But since u  x, v  y we get

ds  1  x
2  y

2
1
2 dxdy

as before.
Example

We shall find the surface area of a sphere of radius a centered at the origin. The equation of the sphere
is

x2  y2  z2  a2

In spherical coordinates the sphere is given by

x  a sinucosv y  a sinu sinv z  acosu



r  a sinucosv i  a sinu sinv j  acosuk

Hence
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ru  rv  a2sin2ucosv i  sin2u sinv j  sinucosuk 


|ru  rv| a2 sinu

and

ds  a2 sinududv

Thus

 
S

ds   
S

a2 sinududv  
0

2 
0


a2 sindd  4a2  surface area of a sphere.

Surface Elements
Suppose that R is a closed rectangular region in the u,v − plane, where a ≤ u ≤ b , c ≤ v ≤ d . Then the
equations x  xu,v, y  yu,v, z  zu,v, where x,y, z are continuous, define a set S which is part
of a surface in x,y, z − space. If the functions x,y, z are also 1-1, i.e. distinct points of R are not mapped
into the same point of S, then the points of S in x,y, z − space comprise a simple surface element. A
simple surface element may be thought of as any configuration which may be obtained from a
rectangular plane region by continuous deformation (bending, twisting, stretching, shrinking) without
tearing and without bringing together any points which were originally distinct.

If S is a simple surface element corresponding to a rectangular region R in the u,v − plane, the points of
S which correspond to the boundary of R form what is called the boundary S. Other points of S are
called interior points.

All surfaces may be thought of as being built up out of simple surface elements by matching together
portions of the edges of the elements. The boundary of a surface consists of the unmatched edges of its
surface elements. If there are no unmatched edges, there is no boundary. For example, a hemisphere has
a boundary consisting of its equatorial rim. An entire sphere, an ellipsoid, and the surface of a cube are
examples of surfaces without boundary.

A surface is smooth if the functions which parametrize it are continuously differentiable. If a surface is
smooth and has no boundary, it is called a smooth surface without boundary. If a surface is given by
Fx,y, z  0, then the surface is smooth without boundary if ∇F ≠ 0 for all x,y, z on the surface.

Example: Consider the surface

Fx,y, z  4x2  9y2 − 2z2 − 8  0

Then

∇F  8x i  18y j − 4zk

and ∇F  0  x  y  z  0. But 0,0,0 is not on this surface.  F is smooth without boundary.

4



Surface Integrals

Example
Evaluate  

S
fx,y, zds where f  x2 and S is the part of the cone

z2  x2  y2

between the planes z  1 and z  2.

We shall use spherical coordinates

x   sincos ,y   sin sin, z  cos.

In spherical coordinates the equation of the cone is   
4

. Letting u   , v    we have for x,y,

and z on the surface of the cone that

xu,v  x,  2
2

cos; yu,v  y,  2
2

 sin; z  2
2



where 0 ≤  ≤ 2 and 1 ≤ z ≤ 2  2 ≤  ≤ 2 2



r  x i  y j  zk  2
2

cos i  2
2

 sin j  2
2

k



ru  r  −
2
2

 sin i  2
2

cos j



rv  r  2
2

cos i  2
2

sin j  2
2

k



r  r  1
2
cos i  sin j − k  and |r  r| 2

2


 
S

x2ds  
2

2 2 
0

2 1
2
2 cos2 2

2
 dd

 2
8  2

2 2
3   sin 2

2 0
2d  15

4
2

Example
Evaluate the integral of
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fx,y, z  x2  y2 z

over the upper half of the sphere of radius 1 centered at the origin.
We shall use spherical coordinates to parametrize the hemisphere. Since   1, we have

x,  sincos, y,  sin sin, z,  cos

Thus

r,  sincosi sin sinj cosk

where 0 ≤  ≤ 
2

and 0 ≤  ≤ 2.

Then

r,  − sin sini sincosj

r,  coscosi cos sinj− sink

Hence

|r  r |  sin

Therefore


S

fx,y, zds  
0

2 
0


2 sin2cos2  sin2 sin2 cos sindd

 
2

Remark: Very often one is interested in an integral of the form

 
S

F  nds

where n is a unit normal (perpendicular) vector to the surface S pointing in the outward direction. From
the discussion above it follows that the vectors ru and rv are both in the “plane” of the surface. Thus
ru  rv is  to the surface S. Hence

 ru  rv

|ru  rv|
is a unit normal.

We choose the appropriate sign (either  or - ) which makes this unit vector outward. One can select an

appropriate point on the surface and see if  ru  rv

|ru  rv|
is inward or outward.

If it is inward, then use − ru  rv

|ru  rv|
.

Note that

 
S

F  nds   
D

F  ru  rv

|ru  rv|
|ru  rv|dudv

  
D

F  ru  rvdudv
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Thus, unless one is asked specifically for the unit vector n , it is not necessary to calculate |ru  rv|.
Example

Let R be the region bounded by the cylinder x2  y2  1 and the planes z  0 and z  x  2. Let S be
the entire boundary of R. Find the value of  

S
F  nds where n is the outward directed unit normal on

S and

F  2x i − 3y j  zk .

Now S is composed of S1,S2, and S3.

On S1 n  −k  F  n  −z. But on z  0 on S1  F  n  0 

 
S1

F  nds  0

On S3 z  x  2  we parametrize as x  u y  v z  u  2

r  x i  y j  zk  u i  v j  u  2k

ru  i  k rv  j  ru  rv  k − i

This is outer



F  ru  rv  −2x  z  −2u  u  2  −u  2

so that

 
S3

F  nds   
G
−u  2dudv

Where G is the projection of S3 in the u,v − plane. But since u  x, v  y and the plane z  x  2
slices the cylinder x2  y2  1, we see that G is the interior of the circle x2  y2 ≤ 1. Thus on S3 we
have
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S3

F  nds   
x2y2≤1

−x  2dA

 −
0

2 
0

1
rcosrdrd  2  

x2y2≤1
dA

 − 1
3 0

2
cosd  2  2

On S2 we shall use cylindrical coordinates x  rcos y  r sin z  z
Since our cylinder is x2  y2  1  r  1 

r  cosi  sin j  zk

where 0 ≤ z ≤ x  2  cos  2, and 0 ≤  ≤ 2.
Taking u   v  z here, we have

r  − sin i  cos j rz  k



r  rz  cos i  sin j  |r  rz| 1

Thus we may use N  cos i  sin j . This vector is outward, since   0∘ gives n  i.

F  N  2 cos i − 3 sin j  zk   N  2 cos2 − 3 sin2

Hence

 
S2

F  nds  
0

2 
0

2cos
2 cos2 − 3 sin2dzd

 
0

2 
0

2cos
2 − 5 sin2dzd  −2

Thus we have finally

 
S

F  nds   
S1
 

S2
 

S3
F  nds  0  2 − 2  0.

Remark: Stewart uses the notation


S

F  dS  
S

F  nds

for the surface integral of F over a surface S. He also calls the 
S

F  dS the flux of F over S.

Example
Parametrize the surface S that is the part of the paraboloid
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x  y2  z2

that lies between the planes x  4 and x  0, and give an expression for


S

xds

Sketch the surface S.
Solution:

Let

y  u sinv, z  ucosv, x  u2

where 0 ≤ v ≤ 2, and 0 ≤ x ≤ 4 implies 0 ≤ u ≤ 2.

ru,v  u2i u sinvj ucosvk

so

ru  2ui sinvj cosvk

rv  ucosvj− u sinvk

ru  rv 
i j k

2u sinv cosv

0 ucosv −u sinv

 2ju2 sinv  2ku2 cosv  i − sin2v u − cos2v u

 −ui 2u2sinvj −2u2 cosvk

:
Thus

|ru  rv |  4u4 cos2v  4u4 sin2v  u2

 u 4u2  1

Thus


S

xds  
0≤y2z2≤4

x|ru  rv |dudv

 
0

2 
0

2
u2 u 4u2  1 dudv  391

60
17   1

60


Example 5 page 956 in Stewart
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Evaluate


S

F  dS

where

Fx,y, z  yi xj zk

and S if the boundary of the solid region E enclosed by the paraboloid z  1 − x2 − y2 and the plane
z  0.
Solution:

The graph of the surface is shown below.

The closed surface S consists of a parabolic top surface S1 and a circular bottom surface S2 :
x2  y2 ≤ 1, z  0.

We may parametrize the surface S1 as

x  u, y  v, z  1 − u2 − v2

Then

ru,v  ui vj 1 − u2 − v2 k

or

ru,v  u,v, 1 − u2 − v2

Thus
∂ru,v
∂u  1,0,−2u

∂ru,v
∂v  0,1,−2v

Hence

ru  rv  1,0,−2u  0,1,−2v  2u, 2v, 1  2ui 2vj k

The projection of S1 onto the u,v −plane, which is this case is the x,y −plane, since x  u and y  v, is
the circle D : x2  y2 ≤ 1. Thus using x and y instead of u and v we have
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S1

F  dS  
D

yi xj zk  2xi 2yj k dA

 
D

yi xj 1 − x2 − y2 k  2xi 2yj k dA

 
x2y2≤1

4xy  1 − x2 − y2 dA

Since we are integrating over a circle of radius 1 centered at the origin, we switch to polar coordinates
and have


S1

F  dS  
0

2 
0

1
4r2 cos sin  1 − r2 rdrd  1

2


Now on S2 n  −k , z  0, and Fx,y, z  yi xjso that F  n  0 and


S2

F  dS  0

Finally


S

F  dS  
S1

F  dS  
S2

F  dS

 1
2
  0  

2
Example

Let S be the surface of the solid cylinder T bounded by z  0 and z  3 and x2  y2  4. Evaluate

 
S

F  ndS,

where

F  x2  y2  z2x i  y j  zk 

and n is the outward unit normal. Sketch the surface.

SOLUTION

S is composed of S1,S2, and S3.

On S1 n  −k 

F  n  −zx2  y2  z2.

11



But z  0 on S1  F  n  0 

 
S1

F  nds  0.

On S3 z  3, n  k 

F  n  zx2  y2  z2  3x2  y2  9  3x2  3y2  27.

Since S3 is a disk of radius 2 we introduce polar coordinates: x  rcos, y  r sin, ds  rdrd and
r2  x2  y2 so

 
S3

F  nds   
S3
3x2  3y2  27dxdy  3 

0

2 
0

2
r2  9rdrd  132

On S2 we shall use cylindrical coordinates

x  rcos y  r sin z  z.

Since our cylinder is x2  y2  4  r  2 

r  2 cos i  2 sin j  zk where 0 ≤ z ≤ 3.

Taking u   v  z here, we have

r  −2 sin i  2 cos j rz  k



r  rz  2 cos i  2 sin j

Thus we may use N  2 cos i  2 sin j for a normal, since this is outward.

F  x2  y2  z2x i  y j  zk 

so

F  4 cos2  4 sin2  z22 cos i  2 sin j  zk 

Then

F  N  24  z22 cos i  2 sin j  zk   cos i  sin j 

 24  z22 cos2  2 sin2  4 4  z2

Hence

 
S2

F  nds  4 
0

2 
0

3
4  z2dzd  168

Thus we have finally

 
S

F  nds   
S1
 

S2
 

S3
F  nds  0  132  168  300.
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Stokes’ Theorem and the Divergence Theorem
Stokes’ Theorem:

Let S be a regular surface bounded by a closed curve denoted by ∂S (boundary of S). Let F and curl F
be continuous over S. Then

 
S

curl F  nds   
S
∇  F  nds  

∂S
F  d r

Here the direction of integration around ∂S is positive with respect to the side of S on which the normal
n is drawn.
Remark:

Example

Verify Stokes’ Theorem when F  y i  3z j  3xk and S is the hemispheric surface z  1 − x2 − y2 .

x2  y2  z2 − 1  0
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We shall use the outward normal n . We calculate 
∂S

F  d r first. Now ∂S is the circle x2  y2  1,

z  0. We parametrize this as

x  cos t, y  sin t, z  0 0 ≤ t ≤ 2

F  sin t i  0 j  3 cos t k

r t  x i  y j  zk  cos t i  sin t j  0k  r ′t  − sin t i  cos t j

Thus


∂S

F  d r  
0

2
− sin2tdt  −.

Now consider

 
S

curl F  nds.

curlF 

i j k
∂
∂x

∂
∂y

∂
∂z

y 3z 3x

 −3 i − 3 j − k

S is the surface x2  y2  z2  1 z ≥ 0. In spherical coordinates   1 

x  sincos, y  sin sin, z  cos
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Let u   v   and therefore

r u,v  sinucosv i  sinu sinv j  cosuk

so that

ru  rv  sin2ucosv i  sin2u sinv j  sinucosuk

At   
2

,   0, i.e. u  
2

v  0 

ru  rv  i which is outward. Let N  ru  rv is outward.
Then

curl F  N  −3 sin2ucosv − 3 sin2u sinv − sinucosu

 
S

curl F  Nds  −
0

2 
0


2 3 sin2ucosv  3 sin2u sinv  sinucosududv

 −3 
0

2 
0


2 cosv  sinv sin2ududv − 

0

2 
0


2 cosu sinududv

 − 3
2 0

2
cosv  sinvu − sin 2u

2
0


2 dv − 1

2 0
2

dv

 − 3
2
 

2
 

0

2
cosv  sinvdv −   − 3

4
− sinv  cosv0


2 −   −

as before.
Example

Verify Stokes’ Theorem is true for the vector field

Fx,y, z  x2i y2j z2k

and S is the part of the paraboloid z  1 − x2 − y2 that lies above the x,y −plane and S has upward
orientation. Sketch S.
1 − x2 − y2 − z  0
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We must show


S

curlF  nds  
∂S

F  dr

curlF 

i j k

∂
∂x

∂
∂y

∂
∂z

x2 y2 z2

 ∇  x2,y2, z2  0,0,0

Thus


S

curlF  nds  0

For the line integral we parametrize the boundary of S, namely the circle x2  y2  1 in the x,y −plane,
as

x  cos t, y  sin t, z  0 0 ≤ t ≤ 2

so

rt  cos ti sin tj 0k

r′t  − sin ti cos tj

Ft  cos2ti sin2tj 0k


∂S

F  dr  
0

2
−cos2t sin t  sin2tcos t dt

 cos3t
3

 sin3t
3 0

2
 0

Example Evaluate the surface integral 
S

∇  F  ndS, where

Fx,y, z  3zi 5xj− 2yk

and S is the part of the parabolic surface z  x2  y2 that lies below the plane z  4 and whose
orientation is given by the upward unit normal vector.
Solution: The surface is shown below:

x2  y2
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We use Stokes’ Theorem to evaluate this integral where C is the circle x2  y2  4, z  4, 0 ≤ t ≤ 2
Then


S

∇  F  nds  
x2y24

F  dr

C may be parametrized as x  2 cos t,y  2 sin t, z  4, so r  2 cos ti 2 sin tj 4k and


S

∇  F  nds  
x2y24

F  dr  
0

2
Ft  r′tdt  

0

2
34i 10 cos tj− 4 sin tk  −2 sin ti 2 cos tj 0k dt

 
0

2
−24 sin t  20 cos2t dt  

0

2
−24 sin t  10  10 cos2tdt  20

Alternatively, we can directly compute the surface integral. First we calculate the integrand.

 F 

i j k

∂
∂x

∂
∂y

∂
∂z

3z 5x −2y

 −2i 3j 5k

For the surface, we use x and y as parameters and have

r  x,y,x2  y2 ,0 ≦ x2  y2 ≦ 4

rx  〈1,0,2x

ry  〈0,1,2y

rx  ry  〈−2x,−2y, 1

Then
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S

∇  F  ndS  
D

〈−2,3,5  〈−2x,−2y, 1dAxy

 
D

4x − 6y  5dAxy

 
0

2 
0

2
4rcos − 6r sin  5rdrd

 20.

Here, the integral is changed into polar coordinates, since the region of integration is the disc
0 ≦ x2  y2 ≦ 4.

The Divergence Theorem (Gauss’s Theorem)

Remark: We shall call a surface positively oriented if the normal N is an outer normal; otherwise, S is
negatively oriented.

Theorem: Suppose S is a regular, positively oriented, closed surface, and that F and div F are
continuous over S and the region V is enclosed by S.

Then

 
S

F  dS   
S

F  nds    
V

div FdV    
V
∇  FdV

where n is the outward unit normal to S.
Note: n must be outward.

Example: Check the validity of the divergence theorem if F  x i  y j  zk , where V is the volume of
the cube 0 ≤ x,y, z ≤ ℓ.

divF  1  1  1  3.

Hence

  
V

divFdV  3   
V

dV  3V  3ℓ3
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Now we must calculate  
S

F  nds over all six faces of the cube. On x  ℓ we use

n  i  F  n  ℓ i  y j  zk   i  ℓ

 
Face xℓ

F  nds  ℓ  
Face xℓ

ds  ℓ  area of face  l3

On x  0 F  y j  zk we may take n  − i . Thus F  n  0 Thus the contribution from this
face is 0.

We get similarly for y  ℓ,  
Face yl

F  nds  ℓ3 , whereas for y  0,  
Face y0

F  nds  0 .

And for the face z  ℓ,  
Face zl

F  nds  ℓ3 and on z  0,  
Face z0

F  nds  0, .

Finally we have

 
S

F  nds  ℓ3  ℓ3  ℓ3  3ℓ3

where S is the entire surface of the cube.
Example

Verify Gauss’s Divergence theorem, namely

 
S

F  nds    
V

div FdV

where F  x − y  z i  2x j  k and S is the closed parabolic bowl consisting of the two pieces

S1 : the circle x2  y2 ≤ 1, z  1,

and

S2 : z  x2  y2; x2  y2 ≤ 1
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Thus S2 is the bowl proper and S1 is the circular cap on top. Since ∇  F  1 

  
V

∇  Fdv    
V

1dv  
−1

1 
− 1−x2

 1−x2


x2y2

1
dzdydx

 
−1

1 
− 1−x2

1−x2

1 − x2 − y2dydx  
0

2 
0

1
1 − r2rdrd

 
0

2
 r2

2
− r4

4
|0

1d  
2

We now evaluate

 
S

F  nds   
S1
 

S2
F  nds

On S2 we use cylindrical coordinates

x  rcos, y  r sin z  z


x  rcos, y  r sin z  x2  y2  r2,

Let r  u,   v  x  ucosv, y  u sinv, z  u2 0 ≤ u ≤ 1 0 ≤ v ≤ 2



r u,v  ucosv i  u sinv j  u2 k

ru  cosv i sinv j  2uk

rv  −u sinvi ucosv j
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ru  rv 
i j k

cosv sinv 2u

−u sinv ucosv 0

 −2u2 sinv j  ucos2vk  u sin2vk − 2u2 cosv i

 −2u2 cosv i − 2u2 sinv j  uk

Note that for v    0, r  u  1, and we have

ru  rv  −2 i  k

which is inner.
Therefore we use

− ru  rv  2u2 cosv i  2u2 sinv j − uk

F  ucosv − u sinv  u2 i  2ucosv j  k



F  n  2u3 cos2v − 2u3 sinvcosv  2u4 cosv  4u3 sinvcosv − u

Therefore

 
S2

F  nds  
0

2 
0

1
2u3 cos2v  2u3 sinvcosv  2u4 cosv − ududv

 
0

2
 1

2
cos2v  1

2
sinvcosv  2

5
cosv − 1

2
dv

 
0

2
 1

4
1  cos2vdv   1

4
sin2v  2

5
sinv − 1

2
v0

2

 v
4
 sin 2v

8 0

2
− 

Thus

 
S2

F  nds  
2
−   − 

2

On S1 : this is the circle x2  y2 ≤ 1, z  1. We use the parametrization

x  rcos, y  r sin, z  1

Therefore r u,v  ucosv i  u sinv j  k 0 ≤ u ≤ 1, 0 ≤ v ≤ 2

ru  cos v  sinv j rv  −u sinv i  ucosv j
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ru  rv 
i j k

cosv sinv 0

−u sinv ucosv 0

 ucos2vk  u sin2vk  uk

As expected this is outward since 0 ≤ u ≤ 1.

F  ucosv − u sinv  1 i  2ucosv j  k


F  ru  rv  u



 
S1

F  nds  
0

2 
0

1
ududv  

So that


S2


S1
 − 

2
   

2

Example Evaluate 
S

F  nds, where

Fx,y, z  x3i y3j z3k

and S is the positively oriented surface of the solid bounded by the cylinder x2  y2  1 and z  0 and
z  2 and n.
Use the Divergence Theorem. Then


S

F  nds  
V

divFdV

divF  3 x2  y2  z2


V

divFdv  
V

3 x2  y2  z2 dv  3 
0

2 
0

1 
0

2
r2  z2 rdzdrd

 3 
0

2 
0

1
2r3  8

3
r drd  3 

0

2 1
2
 4

3
d  32 11

6
 11

Example Let S be the closed surface of the solid cylinder T bounded by the planes z  0 and z  3
and the cylinder x2  y2  4. Calculate the surface integral


S

F  ndS

where

F  x2  y2  z2 xi yj zk

Solution: The surface is
x2  y2 − 4  0
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We use the divergence Theorem


S

F  nds  
T

∇  FdV

F  x2  y2  z2 xi  x2  y2  z2 yj  x2  y2  z2 zk

divF  3x2  y2  z2  x2  3y2  z2  x2  y2  3z2  5 x2  y2  z2

Then


S

F  nds  
T

5 x2  y2  z2 dV

Using cylindrical coordinates to evaluate the integral we have


S

F  nds  
T

5 x2  y2  z2 dV  
0

2 
0

2 
0

3
5 r2  z2 r dzdrd  300

As an alternative, we can calculate the surface integral directly. Since the surface, S, is made up of
three components, top (disc), side (cylinder) and bottom (disc), we deal with each components
separately and then add the results.


S

F  nds  
T

5 x2  y2  z2 dV  
0

2 
0

2 
0

3
5 r2  z2 r dzdrd  300

As an alternative, we can calculate the surface integral directly. Since the surface, S, is made up of
three components, top (disc), side (cylinder) and bottom (disc), we deal with each components
separately and then add the results.

(i) On the top, z  3 and n  k . Thus F  x2  y2  9 xi yj 3k and
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top

F  nds  
x2y2≦4

3 x2  y2  9 dA

 3 
0

2 
0

2
r2  9 rdrd

 3 
0

2 
0

2
r3  9r drd

 132.

(ii) On the bottom, z  0 and n  −k. (Remember, we must use the outward normal.) Thus
F  x2  y2 xi yj 0k and

F  n  0.

Hence,


bottom

F  nds  0.

(iii) On the side, we use cylindrical coordinates to parametrize with r  2. So, we have

r  2 cosi 2 sinj zk

r  −2 sini 2 cosj

rz  k

r  rz  −2 sini k  2 cosj k

 2 sinj 2 cosi

Before proceding, we check that we have the correct (outward) normal. This is OK, so we move to the
integrand. On the surface, we have

F  4  z2 2 cosi 2 sinj zk

F  r  rz  4  z2 4 cos2  4 sin2

 4 4  z2

Thus,


side

F  nds  
0

3 
0

2
4 4  z2 ddz

 168

Finally,


S

F  nds  
top

F  nds  
side

F  nds  
bottom

F  nds

 132  168  0  300
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Ma227 Additional Problems

Green’s, Stokes’ and the Divergence Theorems

Example Use Stokes’ Theorem to evaluate 
S

∇  F  ndS where F  z2i− 3xj x3y3k and S is

the part of the surface z  5 − x2 − y2 above the plane z  1. Assume that S oriented upwards.
Sketch S.

Solution: r,, 5 − r2

Stokes’ Theorem is


S

∇  F  ndS  
C

F  dr

Now the boundary C of S will be where the surface intersects z  1, that is, when 1  5 − x2 − y2 or
x2  y2  4. Thus

C : x  2 cos t,y  2 sin t; 0 ≤ t ≤ 2; z  1

and

F  z2i− 3xj x3y3k

rt  2 cos ti 2 sin tj k

Ft  12i− 32cos tj 2 cos t32 sin t3k

Then

r′t  −2 sin ti 2 cos tj

and

Ft  r′t  −2 sin t − 12 cos2t

Thus
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C

F  dr  
0

2
Ft  r′tdt  

0

2
−2 sin t − 12 cos2t dt  2 cos t − 6cos t sin t  t0

2  −12

Example Verify Green’s theorem for the line integral


C

x  ydx  x − ydy

where C is the positively oriented unit circle centered at the origin.
Solution: A parametrization of C is x  cos t,y  sin t 0 ≤ t ≤ 2. Thus


C

x  ydx  x − ydy  
0

2
cos t  sin t− sin t  cos t − sin tcos tdt

 
0

2
−2 sin tcos t − sin2t  cos2t dt

 −2 sin2t  1
2

cos t sin t − 1
2

t  1
2

cos t sin t  1
2

t
0

2
 0

Here P  x  y and Q  x − y so


x2y2≤1

Qx − PydA  
x2y2≤1

1 − 1dA  0

Example Evaluate the surface integral


S

F  ndS

where

F  xyi− 1
2

y2j zk

and the closed surface S consists of the two surfaces z  4 − 3x2 − 3y2, 0 ≤ z ≤ 4 on the top on the top
with normal upward, and z  0 on the bottom with normal downward.
Solution: r,, 4 − 3r2
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We use the divergence theorem, namely


S

F  ndS  
E

∇  FdV

where E is the volume enclosed by S.

∇  F  y − y  1  1

Note that z  0  x2  y2  4
3

. Using cylindrical coordinates we have 0 ≤ z ≤ 4 − 3r2,

0 ≤ r ≤ 2
3

, and 0 ≤  ≤ 2


E

∇  FdV  
0

2 
0

2
3 

0

4−3r2

1rdzdrd  
0

2 
0

2
3 4r − 3r3 drd  

0

2
2r2 − 3

4
r4

0

2
3 d

 
0

2
2 4

3
− 3

4
16
9

d  
0

2 4
3

d  8
3

Alternatively, we will calculate the suface integral directly. Let S1 denote the portion of the paraboloid
on top and S2 denote the disc on the bottom.

For S1 we parametrize the surface using x and y as the parameters. Thus

rx,y  x,y, 4 − 3 x2  y2

rxx,y  〈1,0,−6x

ryx,y  〈0,1,−6y

The domain of rx,y is the disc D  x,y|0 ≦ x2  y2 ≦ 4
3

.

Then,
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rx  ry 
i j k

1 0 −6x

0 1 −6y

 6xi 6yj k

We observe that the z component is positive, so we have the correct orientaion of the normal.


S1

F  ndS  
D

xy,− 1
2

y2,4 − 3 x2  y2  〈6x, 6y, 1dAxy

 
D

6x2y − 3y3  4 − 3 x2  y2 dAxy

 
0

2 
0

2
3 6r3 cos2 sin − 3r3 sin3  4 − 3r2 rdrd

 
0

2 
0

2
3 6r4 cos2 sin − 3r4 sin3  4r − 3r3 drd


0

2 6
5

r5 cos2 sin − 3
4

r5 sin3  2r2 − 3
4

r4 |r0

r 2
3 d

 
0

2 6
5

2
3

5

cos2 sin − 3
4

2
3

5

sin3  2 4
3
− 3

4
16
9

d

 6
5

2
3

5
−cos3

3 0

2
− 3

4
2
3

5
− sin2cos − 2 cos

3 0

2
 4

3
2

 8
3

For S2, we also parametrize using x and y, but now z  0 so it’s much simpler.

rx,y  〈x,y, 0

rxx,y  〈1,0,0  i

ryx,y  〈0,1,0  j

The domain is the same disc,D, as for S1.

rx  ry  i j  k

We observe that this vector points upward and we need the downward normal, so we use the negative
and have


S2

F  ndS  
D

xy,− 1
2

y2,0  〈0,0,−1dAxy

 0

Finally
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S

F  ndS  
S1

F  ndS  
S2

F  ndS

 8
3

 0
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