MAZ227 Surface Integrals

Parametrically Defined Surfaces
We discussed earlier the concept of ”s f(x,y,z)ds where S is given by

z = 9(x,y) . We had

[Jros=[] f(x,y, 9, y)[L + 9 + 9317 dA
S

where R is the projection of S onto the x,y - plane. We shall now develop a generalization of this
concept.

There are three common ways of defining a surface:

z=39(xy) 1)
as above. Here 3 must be a single-valued, continuous function defined on a region of the plane.

I1. Often surfaces are represented by equations of the form
F(x,y,2) =0 2)

If (X0,Y0,20) is a point on such a surface, we can in many cases represent the portion of the surface
near (Xo,Yo,Zg) in a form analogous to (1) by solving (2) for x,y, or z in terms of the other two
variables.

I11. It is frequently convenient to describe a surface by a parametric representation.

Example:
X = asinucosv  y = asinusinv. Z =acosu

Here u and v are independent parameters. This represents a sphere whose equation is
X2 +y2 472 = g2
This equation is gotten by elimination of u and v. Note that u and v are the spherical coordinates ¢ and

0 respectively.
The set of equations

X = x(u,v) y =vy(u,v) z =1z(u,v) 3)

where u and v are parameters represents an arbitrary surface. This can be seen by eliminating u and v
from (3), a procedure that leads to an equation of the form F(x,y,z) = 0 which is case Il.

In terms of the radius vector ¥ = X1 + yT +ZK equation (3) for the surface may be written as



T = PUV) = xUV)T +yUV)] +2U VK

From the parametric equations for a surface it is possible to establish a formula for ds, the element of
surface area. In general, ds is obtained by calculating the area between the curves corresponding to:

u = up, u = ug +du, v = vgandv = vg + dv.

For infinitesimal areas this element will be essentially planar and have area ds = |A§ X A8| , Where the
vectors are the sides of the differential parallelogram shown in the diagram.

Vgt dV
C
B Vg
Vo /A / Ug+du

A = T(uo, Vo)
B = T(ug +du,vg) = T(ug,Vp) + %(uo,vo)du + oo

C = T(ug,vp + dv) = T(ug,Vp) + %—3(u0,vo)dv+

Thus

B_0r 2. or
AB = audu AC = aVdv

ds = |% y %wudv



Hence, in general, we have for a surface given by

X = x(u,v) y =vy(u,v) z=1z2(u,v)
that

I, foyads = [ [P x Puldudv,

where G is the image of the surface S in the u,v -plane.

Suppose the surface S is given by the representation z = 9(x,y) (case I). Let
X = U, y=v => z=3_8U,v)

Then
PUV) = Ul +V] + 93Uk
also represents the surface. Thus

and

SO

1
ds = [Py x Fy|dudv = [1 + 9% + 9¢] 2 dudv
Butsince u = x, v = y we get

1
ds = [1+ 9% + 9] 2 dxdy
as before.
Example

We shall find the surface area of a sphere of radius a centered at the origin. The equation of the sphere
is

X2 +y? +22 = a?
In spherical coordinates the sphere is given by

X = asinucosv  y = asinusinv  z = acosu

T = asinucosvi +asinusinvj +acosuk
Hence



— =

g x Ty = a2(sinucosvi +sin2usinvj +sinucosuk)

=
[Fu x Fv|= a2sinu
and
ds = a2sinududv
Thus

”s ds = ”s a2sinududv = J.(Z)ﬁ jg a2singd¢dd = 4ra? = surface area of a sphere.

Surface Elements

Suppose that R is a closed rectangular region in the u,v — plane, wherea < u < b,c <v < d. Then the
equations x = x(u,v), y = y(u,v), z = z(u,v), where x,y,z are continuous, define a set S which is part
of a surface in x,y,z — space. If the functions x,y,z are also 1-1, i.e. distinct points of R are not mapped
into the same point of S, then the points of S in x,y,z — space comprise a simple surface element. A
simple surface element may be thought of as any configuration which may be obtained from a
rectangular plane region by continuous deformation (bending, twisting, stretching, shrinking) without
tearing and without bringing together any points which were originally distinct.

If S is a simple surface element corresponding to a rectangular region R in the u,v — plane, the points of
S which correspond to the boundary of R form what is called the boundary S. Other points of S are
called interior points.

All surfaces may be thought of as being built up out of simple surface elements by matching together
portions of the edges of the elements. The boundary of a surface consists of the unmatched edges of its
surface elements. If there are no unmatched edges, there is no boundary. For example, a hemisphere has
a boundary consisting of its equatorial rim. An entire sphere, an ellipsoid, and the surface of a cube are
examples of surfaces without boundary.

A surface is smooth if the functions which parametrize it are continuously differentiable. If a surface is
smooth and has no boundary, it is called a smooth surface without boundary. If a surface is given by
F(x,y,2) = 0, then the surface is smooth without boundary if VF =+ 0 for all x,y, z on the surface.

Example: Consider the surface
F(x,y,2) = 4x2 +9y2 - 272 -8=0
Then

VF = 81 + 18yT — 47K
andVF =0 = x =y =z = 0. But (0,0,0) is not on this surface. = F is smooth without boundary.



Surface Integrals

Example
Evaluate ”s f(x,y,z)ds where f = x2 and S is the part of the cone

22 = x2 +y?
between the planesz = 1and z = 2.

We shall use spherical coordinates

X = psin¢gcosh ,y = psingsinhd,z = pcosa.
In spherical coordinates the equation of the cone is ¢ = % Lettingu = 0 ,v = p = we have for x,y,
and z on the surface of the cone that

2 2 . 2
x(u,v) = x(0,p) = %pCOSQ: y(u,v) =y(0,p) = %psme; z= %p
where0 <@ <2rand1<z<2 = J2 <p<2J2
=
T =xi+y] +2K = %pcos@Tﬁ %psin@i@ %p?
=
r_u)zr_g)z—%pSiHQ_i)-f- %pcosﬂ)
=
W="p= £cose_i)+ £sin9T+£E
2 2 2
=
ﬁ;’xﬁ,’z%p[cose_i)JrsineT—?] and [rg xTpl= %p
2J2 ¢2n ﬁ
2de — 1 2052 ~Ne
IISX ds = 7 Io <2p cos 0)( 5 p)d@dp
_ A2 (27 sin20 \|2zq, — 15
=5 [ p2(0+ %0 )lfran = 3 f2x
Example

Evaluate the integral of



fx,y,2) = (X% +y?)z
over the upper half of the sphere of radius 1 centered at the origin.
We shall use spherical coordinates to parametrize the hemisphere. Since p = 1, we have

X(¢,0) = singcosh, y(4,0) =singsing, z(¢,0) = cos¢
Thus
P(¢,0) = singcosOi +singsind] + cos gk
where 0 < ¢ < Z-and 0 < 6 < 2r.

Then
To($,0) = —singsindi + singcosoj
?¢(¢,9) = cos¢cos(ﬁ+ cosqbsinHT— sin ¢E
Hence
[Fo xTp| = sing
Therefore
2r 0L
_ 2 (cin2 2 024 cin2 i
”Sf(x,y,z)ds = J.o -[o (sin2¢cos26 + sin2¢sin29’) cos ¢ sin gpdgdo
-
2
Remark: Very often one is interested in an integral of the form

J.J.SI_:)-ﬁ’ds

where T is a unit normal (perpendicular) vector to the surface S pointing in the outward direction. From
the discussion above it follows that the vectors T and Ty are both in the “plane” of the surface. Thus
Tu x Ty is L to the surface S. Hence

+M

+ is a unit normal.
|ru X rvl

We choose the appropriate sign (either + or - ) WhICh makes this unit vector outward. One can select an

X
appropriate point on the surface and see if + % is inward or outward.
fu X'y
Ty xTy
If it is inward, then use - —4—=—L .
|ru X rvl

Note that

” S—H F (I:E §|>(lm’xm)dudv
uXly

= IID F . (fu x Ty)dudv



Thus, unless one is asked specifically for the unit vector T , it is not necessary to calculate [Fy x Ty|.
Example

Let R be the region bounded by the cylinder x2 +y2 = 1 and the planesz = 0 and z = x + 2. Let S be

the entire boundary of R. Find the value of ”s F . Tds where T is the outward directed unit normal on

Sand
F =27 - 3yT +ZK.

Now S is composed of S1,S», and Ss.
OnS; A=-K > F-H=-z2Butonz=0onS; > F-T=0 =
0

”s F.Tds =
1

OnS3 z = x+2 = we parametrize as x = u y=v z=U+2

P=xXi+y]+zk =Ui +Vj +U+2)K

fM=1+K T=] =Tfixfth=Kk-1
This is outer
=
E-(ﬁ}xﬁ,’)=—2x+z:—2u+u+2:—u+2
so that

I . F.Rds = ”G(—u+2)dudv
3

Where G is the projection of Sz in the u,v — plane. But sinceu = X, v =y and the planez = x + 2
slices the cylinder x2 + y2 = 1, we see that G is the interior of the circle x2 + y2 < 1. Thus on S3 we
have



I s F-Tds = Isz+y2§1 (—x + 2)dA

= —jzn Ig rcos@rdrd9+2” dA

x24y2<1

_ 1 (% _
— 3j0 cosOd0 + 27 = 21

On S, we shall use cylindrical coordinates x = rcosé  y=rsind z=1z2
Since our cylinderisx2 +y2 =1 > r=1 =

T = cos6i +sinf] +zK
where0 <z<x+2=c0sf+2,and0 < 0 < 2r.
Takingu = 0 v = z here, we have

—

rg =—sinfi +cosdj T;=KkK

ToxT7=cosfi +sinfj = [fgxTz=1
-
=i,

Thus we may use N = cosd1 +sin QT. This vector is outward, since 6 = 0° gives it

- 9 - Lo D> 9 .
F-N=(2cos@i —3sindj +zk) - N = 2cos26 — 3sin20

-”s F . Tids
2

Hence

0
2r

0

o

2+

J.zn J«2+cose)(2 cos20 — 3sin20)dzdé
co
Jo Js

N .
(2 - 5sin20)dzdd = -2x

Thus we have finally

J[ F-tds = <Hsl+jjsz+jjs3>ﬁ-ﬁ’ds = 0+27-21=0.

Remark: Stewart uses the notation
”SF-dS :HSF-nds

for the surface integral of F over a surface S. He also calls the ”s F . dS the flux of F over S.

Example
Parametrize the surface S that is the part of the paraboloid



X =y2+z2
that lies between the planes x = 4 and x = 0, and give an expression for

HS xds

Sketch the surface S.
Solution:

Let

y = Usinv, z = ucosv, x = u?
where0 <v <2z, and 0 < x < 4 implies0 < u < 2.

N 2—.' . rd 'nd
r(u,v) = u“i+ usinvj + ucosvk

o)
- = . g rd
Fu = 2ui + sinvj + cosvk
- = P
Fy = UCosVj — usinvk
i j k
FuxTv=| 2u sinv  cosv
0 ucosv -usinv
- . — = .
= 2ju?sinv + 2ku? cosv + i(—(sin?v)u — (cos?v)u)
- 2 /r - 2 -
= —Ui + 2u“(sinv)j + —2u< cosvk
Thus
[Fu x Tv| = ¥4u®cos2v + 4u?sin2v + u2
— uy4u? +1
Thus

J‘J‘S xds = J-[O<y2+22<4 X[Fu x Py|dudv

_J'Zﬁ.f (u 4u? + 1>dudV— 391 J_n+

Example 5 page 956 in Stewart



Evaluate
Il S F.dS

I?(x,y,z) = yT+ xT+ ZE

where

and S if the boundary of the solid region E enclosed by the paraboloid z = 1 — x2 — y2 and the plane
z=0.

Solution:

The graph of the surface is shown below.

The closed surface S consists of a parabolic top surface S1 and a circular bottom surface S :
x2+y2<1,z=0.

We may parametrize the surface Sq as
X=u, y=v, z=1-u2-V2

Then
T(U,v) = Ui +Vj + (1-u?- v2>E
or
Tu,v) = (uv,1-u?-v?)

Thus

oru,v) _

TN _ (0,1,-2v)
Hence

Pu x Ty = (1,0,-2u) x (0,1,-2V) = (2u,2v,1) = 2ui + 2vj + K

The projection of S1 onto the u,v —plane, which is this case is the x,y —plane, sincex = uandy = v, is
the circle D : x2 +y2 < 1. Thus using x and y instead of u and v we have

10



1 D
.[.[D<yi Xj <1 X2 y2>k> ° <2Xi 2yj t k>dA

- ~”x2+y2<1 (4xy +1-x%—y2)dA

Since we are integrating over a circle of radius 1 centered at the origin, we switch to polar coordinates
and have

F.dS= 7t 4r2cosOsing + 1 — r2rdrdd = L7
I, o J( ) 2

NowonS, 0= Kk, z=0, and l?(x,y,z) = yT+ szo that F - = 0 and

”S F.dS=0
2

Finally
”SF ds = | . F o|3+jjs2 ds
= %ﬂ' +0 = %
Example
Let S be the surface of the solid cylinder T bounded by z = 0 and z = 3 and x2 + y2 = 4. Evaluate
[].F-mds,
S
where

F=02+y2+22)(XT +y] +2K)
and T is the outward unit normal. Sketch the surface.

SOLUTION

i3

52

2l

S is composed of S1,S», and S3.

OnS; T =-K=

F-® =202 +y2 +12).

11



Butz=0onS; = F-H=0 =
” F.Tds = 0.
S1

OnS3 z=3 R =1+K =
P =422 +y2+22) = 3(x2 +y2 +9) = 3x2 + 3y2 + 27.

Since S is a disk of radius 2 we introduce polar coordinates: X = rcosf, y = rsinf, ds = rdrdf and

r2 =x2+y2so

N 21 2
| g, F oS | jss(sx +3y2 4 27)dxdy = 3 jo jo (r2 + 9)rdrdd = 1321

On S, we shall use cylindrical coordinates
X=rcos® y=rsing z=z
Since our cylinderisx2 +y2 =4 = r=2>

T = 2c0sO7T +2sin0] +zK where 0<1z<3.

Takingu = 0 v = 7 here, we have

—_ . —> —> —_ -
rg =-2sinfi +2co0s0j r; =Kk

ToxTz= 20059T+23in9T
Thus we may use N = 2cos67 + 2sin OT for a normal, since this is outward.
B o2 v2 0 22\(x T v a7k
F=X+ys+z9)(Xi +yj +zk)

S0
F = (400526 + 4sin20 + 22)(2cosOT + 2sinf] + zK)
Then
FoN=2(4+22)(2c0s0T + 2sinf] + zK) - (cosfT +sind])
= 2(4 +22)(2c0s%0 + 25in20) = 4(4 +122)
Hence

j F.Rds = 4](2)” j§(4+z2)dzd9 — 1687

Thus we have finally

”ST:’.ﬁds _ (HS +HS +”S )E’-ﬁ’ds — 0+ 1327 + 1687 = 3007.
1 2 3

12



Stokes’ Theorem and the Divergence Theorem
Stokes” Theorem:

Let S be a regular surface bounded by a closed curve denoted by oS (boundary of S). Let Fandcurl F
be continuous over S. Then

[ e ds = [[ (VxP)-THas=§ F-ap

Here the direction of integration around 6S is positive with respect to the side of S on which the normal
-
n is drawn.

Remark:
hin?. pcx
Z
Y
positive
X
lin8.pcx
Z
-
N
e =y
| positive
as
X
Example

Verify Stokes’ Theorem when F-= y_i) + 3zT +3xK and S is the hemispheric surface z = /1 - x2 —y2.

x2+y2+22-1=0

13



We shall use the outward normal 7. We calculate §as F . d7 first. Now S is the circle x2 + y2 =1,
z = 0. We parametrize this as

X = COSt, y = sint, z=0 0<t<2n

F =sinti +0j + 3costk

T@) = XT +y] +2K = costi +sintj +0K = T (t) = —sinti +cost]
Thus

2
§ Foar=| " _sin2tdt = —r.
85 0
Now consider

-”s curl F - Rds.

77 K
BE_| 2 @& & |- _37-37-%
curlF = x N 3i-3j -k
y 3z 3Xx

Sisthe surface x2 +y2+22 =1  z > 0. In spherical coordinates p = 1 =

X = sin¢coso, y = sin¢gsino, Z =Cos¢

14



Letu=¢ v =0 and therefore
T(u,v) = sinu CosVi + sin usian + cosuk
so that
ﬁ} X

Aty = 7, =0, ieu=

fu x Ty = i which is outward. Let N = 1y x Ty is outward.

= SIN“UCOSV I + sIn“usinv ] +sinucosuk

v=0=>

(S =

Then
curl F - N = —3sin2ucosv — 3sin2usinv — sinucosu
-5 o 2 oL
IIS curl F « Nds = —_[0” _[02 (3sin2ucosv + 3sin2usinv + sinucosu)dudv
or o & 2n o
= _ 2 i in2 — 2 i
3.[0 Io (cosv + sinv) sin“ududv Io _[0 cosusinududv
=3 J.Zﬁ(cosv +sinv)[u — M] %dv -1 jzn dv
2 Jo 2 0 2o
- -3z I2ﬂ[005v+ sinv]dv — z = —3Z [—sinv + cosv]% - =-
2°27Jp 4 0
as before.
Example

Verify Stokes” Theorem is true for the vector field
Fx,y,z) = x%i +y2) + 22k

and S is the part of the paraboloid z = 1 — x2 — y? that lies above the x,y —plane and S has upward
orientation. Sketch S.

1-x2-y2-7=0

15



We must show
”curlﬁ - nds = § F.df

S S
T7 Kk
E-| 2 @2 20 |_ 2 2 52\ _
curlF = | = 5 o |~V (x2,y2,2%) = (0,0,0)
X2 y2 72
Thus
chrlrz -nds =0
S
For the line integral we parametrize the boundary of S, namely the circle x2 + y2 = 1 in the x,y —plane,
as
Xx=cost, y=sint, z=0 0<t<2n
SO

P(t) = costi +sintj + Ok
7'(t) = —sinti + costj
F(t) = cos2ti + sin2{j + 0k

§ F.dr = J.f)n(—cosztsint+sin2tcost)dt
a5

_ [ cos3t , sint ]2” _
3 3,

Example Evaluate the surface integral ”(V X ﬁ) - NdS, where
S
Ié(x,y,z) =3+ SXT— 2yT€
and S is the part of the parabolic surface z = x2 + y? that lies below the plane z = 4 and whose
orientation is given by the upward unit normal vector.
Solution: The surface is shown below:

x2 +y2

16



We use Stokes’ Theorem to evaluate this integral where C isthe circlex2 +y2 =4,z =4,0<t< 2z
Then

J;J.(Vxﬁ).ﬁds: j; F.dv

x24y2=4

C may be parametrized as x = 2cost,y = 2sint, z =4, soT = 2costi + 23intT+ 4K and

I[GCORCE

2r . 2 2r .
= Io (=24sint + 20cos?t)dt = Io (=24sint + 10 + 10cos 2t)dt = 20x

Alternatively, we can directly compute the surface integral. First we calculate the integrand.

For the surface, we use x and y as parameters and have

Then

= 2i+ 3T+ 5k

@ o -

T={Xyx?>+y?),0<x2+y2 <4

Px = (1,0,2)
Ty =(0,1,2y)

- -

Fx x ry = (=2X,-2y,1)

17

- 27 - - 2r - — S .o — —
2 i F.dr = Io F@) -7 (t)dt = .[0 (3(4)| + 10costj — 4smtk> . (—Zsmtl + 2costj + Ok)dt
Xe+yc=4



”(V % ﬁ) - 1idS = ”<_2’ 3,5) « (-2x,-2y,1)dAxy
S D

= [[ax -6y +5)dAy
D

2r 2 .
=I I (4rcosf — 6rsin@ + 5)rdrdo
070

= 20r.

Here, the integral is changed into polar coordinates, since the region of integration is the disc
0<x2+y2 <4

The Divergence Theorem (Gauss’s Theorem)

Remark: We shall call a surface positively oriented if the normal N is an outer normal; otherwise, S is
negatively oriented.

Theorem: Suppose S is a regular, positively oriented, closed surface, and that Fand divF are
continuous over S and the region V is enclosed by S.

Then

T

”Sﬁ.d§:jj5".ﬁds=j”vdivﬁdvz”jvv.rz’dv

where T is the outward unit normal to S.
Note: T must be outward.

Example: Check the validity of the divergence theorem if F=xi+ yT + z?, where V is the volume of
the cube 0 < x,y,z < L.

lhinl0.pcx

Fofme ey

divE=1+1+1=3.

HIV diVﬁdV=3IIIVdV=3v:393

Hence

18



Now we must calculate Hs I_:) - Tids over all six faces of the cube. On x = ( we use

N TN R e
Nn=1i=>F-Nn=0Ui+yj+zk)-i =1

“' |_:’.ﬁ’ds=UII ds = ( x (area of face) = I3
Face x=( Face x=(

Onx=0 F-= yT + 7K we may take W = 7. ThusF-R" =0 Thus the contribution from this

face is 0.
We get similarly fory = {, ”Face " F -Rds = (3, whereas fory = 0[]

—

Face y=0 F-.nds=0.

—

And for the face z = (, [ | F-Rds =3 andonz = O,”Face oF .nds = 0, .

Face z=I

Finally we have
”ST:’-ﬁ’ds — (3403403 =33

where S is the entire surface of the cube.
Example
Verify Gauss’s Divergence theorem, namely

jiﬁ.ﬁ’ds = H\j/divﬁ’dv

where F = xX—-y+ z)T + ZXT + K and S is the closed parabolic bowl consisting of the two pieces

Sy :thecircle x2+y2<1, z=1,
and

So:z=x2+y%  x24+y?2<1

19



S,

Thus S5 is the bowl proper and S+ is the circular cap on top. Since V.F=1>

J‘J‘J.e-l_fdv= J.Hldv= J.:J‘:/i_z IX 2.2 dzdydx

v
_[ .[_,/__(1 x2 —y2)dydx = Izn I(l)(l — r2)rdrde

_ (2 ot _
‘Io(z 71000 = 3

We now evaluate

I 7 -mos= ([, +I[, )77

On S, we use cylindrical coordinates

X = rcoso, y =rsiné 1=1

=
X =rcosd, y=rsing z=x%+y2=r2
Letr=u, 6=v =  x=ucosv, y=usiny, z=u?2 0<u<l1
=

T(u,v) = ucosvi +usinvj +u?k
Tu = cosvisinvj +2uk
N

'y = —=usSInvi +UucosV ]

20



- - -
i j K
TUxTV=1_cosv sinv 2u |=-2u2sinvj +ucos?vk +usin?vk —2u2cosvi

—usinv ucosv 0
= —2u2cosVi - 2u2sinv]j +uk
Note that forv = 0 = 0, r =u =1, and we have
TuxTry = —Z_i) + E)

which is inner.
Therefore we use

— =

2 - 2. rd -
—Ty x Ty =2uUccosvi +2u<sinvj —uk

=1 . N - P
F = (ucosv—usinv+u<)i +2ucosvj +k

=
F -7 = 2u8cos2v — 2udsinvcosv + 2u4 cosv + 4usinvcosv — u
Therefore
2.3 2m (1o 3 00e2 34 4
” F nds=j _[ [2u® cos“V + 2u®sinvcosV + 2u” cosV — u]dudv
S, 070
2n
_ 1 cos2y o+ L g 2 _1
= Io [2 COS“V + 5 SINVCOSV + & COSV 2]dv
2n
- 1 L cin2v + 2 siny — Ly127
= Io {4(1+(:032v)}dv+[4 sin“v + & sinv 2v]o
_[v , sin2v ]?"
- [4 T8 }o 4
Thus

—
J' F.Rds= & _gp—_X
RY)

On Sy : this is the circle x2 +y2 < 1, z = 1. We use the parametrization

X = rcosé, y = rsiné, z=1

Therefore T(u,v) = ucosvi + usian+? 0<uc<l, 0O<v<2n

Tu=cosV+sinvj Ty =-usinvi +Uucosvj



- - -
i j K
— — 2 rad . - g
ruxrfv =1 cosy sinv 0O | =ucossvk +usin“vk = uk
0

—usinv ucosv

As expected this is outward since 0 < u < 1.
=1 . - - =
F = (ucosv—usinv+1)i +2ucosvj + k

=
F.@uxP)=u
=
IJF-ﬁds:j nj ududv = 7
0 J0
S1
So that

(il -5 +n- %

Example Evaluate ”IE - nds, where
S
Fx,Y.2) = x37 +y3 + 23K
and S is the positively oriented surface of the solid bounded by the cylinder x2 +y2 = 1 and z = 0 and
z=2andn.
Use the Divergence Theorem. Then

Ljﬁﬁds:j\j/jdivEdV

divF = 3(x2+y? +22)
divFdv = [[[3(x% +y2 +22)dv = 3 112 (62 + 22 rdzdrdo
( =3[ [ 22
v %

- 3](2)” j;(er + %r)drde - 3](2)”(% + %)de - 3(27[)% — 11z

Example Let S be the closed surface of the solid cylinder T bounded by the planesz = 0andz = 3
and the cylinder x2 + y2 = 4. Calculate the surface integral

”E-ﬁds
S

where
F= (x2 +y? +122) <XT+ yj + zﬁ)

Solution: The surface is
x2+y2-4=0
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We use the divergence Theorem

Hﬁ-nds:” V . Fdv
S T

F=(x2+y2+ 22><XT> + (X2 +y2+ 22><YD + (P +y? 22><ZE>

divF = 3x2 +y2 +22 +x2 +3y2 + 22 +x2 +y2 4 322 = 5(x2 +y2 + 72)
Then
J.J.IE - nds = J-J-J-5<x2 +y2 +22)dv
S T
Using cylindrical coordinates to evaluate the integral we have

J.J.IE - nds = IIIS(XZ +y? +22)dV = Isﬂ I(Z) Iz<5<r2 +22)r)dzdrd = 3007
S T

As an alternative, we can calculate the surface integral directly. Since the surface, S, is made up of
three components, top (disc), side (cylinder) and bottom (disc), we deal with each components
separately and then add the results.

”ﬁ - nds = IIIS(XZ +y2 +22)dV = jsﬂ Iz Ij(S(rZ +22)r)dzdrdd = 3007
S T

As an alternative, we can calculate the surface integral directly. Since the surface, S, is made up of
three components, top (disc), side (cylinder) and bottom (disc), we deal with each components
separately and then add the results.

(i) Onthetop,z = 3andR = k. ThusF = (x2+y2+9) <x7+ yj + 3E> and
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”I?-ﬁds= ” 3(x2+y2+9)dA

top x2+y2<4
21 02
= 3J.0 I0<r2 +9)rdrd¢

2m 02
_ 3
= 3J.0 J.o (r3+9r)drdo
= 1327.

(ii) On the bottom, z = Oand i = X (Remember, we must use the outward normal.) Thus

2

F=(x2 +y2><x7+ yj + OE) and
F-Hi=o0.

Hence,
” F.nds = 0.

bottom
(iii) On the side, we use cylindrical coordinates to parametrize with r = 2. So, we have
? = 2c0s6i + 2sin6j + zk
—25in6i + 200307
K
~2sin0i x K + ZcoseTx_k)

= 25in0T+ 2cos6i

To

N
I

—

>
r
g xT

z

Before proceding, we check that we have the correct (outward) normal. This is OK, so we move to the
integrand. On the surface, we have

F= <4+22><2c0597+ 2sin6j + zﬁ)
F-(FgxTz) = (4+122) (4c0s20 + 4sin20)

=4(4+12%)
Thus,
— 3 277.'
” Fonds = [ [ 744 +22)dodz
side
= 168x
Finally,

7 P
T

-nds:”ﬁ-nds+”ﬁ-nds+ “ F .nds

top side bottom
= 1327 + 1687 + 0 = 300%
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Ma227 Additional Problems

Green’s, Stokes’ and the Divergence Theorems

Example Use Stokes’ Theorem to evaluate ”(V x ﬁ) - AdS where F = 221 — 3x] + x3y3k and S is

S
the part of the surface z = 5 — x2 — y2 above the plane z = 1. Assume that S oriented upwards.
Sketch S.
Solution: (r,6,5—r?)

Stokes’ Theorem is
H(Vxﬁ) .ndS = §|E .dr
S C

Now the boundary C of S will be where the surface intersects z = 1, that is, when 1 = 5 — x2 —y2 or
x2 +y2 = 4, Thus
C: x=2cost,y=2sint; 0<t<2r;,z=1
and
F = 22 - 3x) + x3y3k
P(t) = 2costi + 2sintj + K
F(t) = (1)% - 3(2) costj + (2cost)3(2sint)3k

Then
7'(t) = —2sinti + 2cost]
and
F(t) - 7'(t) = —2sint — 12cos?t
Thus
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§F .dr = _[0” F(t) - 7' (t)dt = IO”<—25int— 12cos?t)dt = [2cost - 6(costsint + t)]&" = 12
C

Example Verify Green’s theorem for the line integral
§(x +y)dx + (X —y)dy
C

where C is the positively oriented unit circle centered at the origin.
Solution: A parametrization of C is x = cost,y = sint 0 <t < 2z. Thus

§(x +y)dx+ (X -y)dy = I(Z)n[(cost + sint)(—sint) + (cost — sint)(cost)]dt
C

_ [T —2sintcost — sin?t + cos?t ) dt
J;

_[_2sin2t + L costsint— Lt+ L costsint+ Lt]°" =
= [ 2sin“t + > costsint 2t+ > costsint + 2t]0 0
Here P =x+yand Q = x—yso
[[ @-Ppda= [[ 1-1da=0
x24+y2<1 x2+y2<1
Example Evaluate the surface integral
[ F-rids
S
where
= _ —_;_l 2-_; —
F= (xyl >y j+Zk>

and the closed surface S consists of the two surfaces z = 4 — 3x2 — 3y2, 0 < z < 4 on the top on the top
with normal upward, and z = 0 on the bottom with normal downward.

Solution: (r,0,4 - 3r2)
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We use the divergence theorem, namely

Uﬁ-ﬁdszmv.ﬁdv

S E
where E is the volume enclosed by S.

V.F= y-y+1=1
Notethatz = 0 = x2 +y2 = %. Using cylindrical coordinates we have 0 < z < 4 — 3r2,
0<r<-Z and0<fh<2
= = ﬁ = /4

[[[v-Fav - ji” If jg_srz(l)rdzdrde _ jz” jo% (4r - 3r3)drdo = jz”[zrz ) §r4]%d9
E

I 12(4) - () Jeo -1 ($)e - 55

Alternatively, we will calculate the suface integral directly. Let S1 denote the portion of the paraboloid
on top and S, denote the disc on the bottom.

For S; we parametrize the surface using x and y as the parameters. Thus
Px,y) = (x,y,4-3(x? +y2))
Tx(X,y) = (1,0,-6x)
ry(x,y) = (0,1,-6y)

The domain of F(x,y) is the disc D = {(x,y)l0 < x2 +y? < %
Then,
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7] k
TxxTy=1]1 0 —6x = 6Xi + 6y] + K
0 1 -6y

We observe that the z component is positive, so we have the correct orientaion of the normal.

2
5 [ 6r3cos?0sing — 3r3sin30 + 4 — 3r? Jrdrdo

3 [6r4cos?sing — 3r4sind¢ + 4r — 3r3 ]drdo

oﬁ|m

2

r:_
5c0s20sinf — 3 5qin3 2_3.4 J3
r°cos<0singd 4r sin°f + 2r 4r ]|r:0 do

5 5
2 2pcing - 3 _2_ i3 4 316
(,/@) cos<40sing 4(J§> sin 0+23 779 :|d9

5 _ 5 =
[ —c0s30 ]92” 3( 2 [ —sin20cosf — 2cos0 ]02” L 4o,
3 4 00 3

J3 3

0=0

Il
o ulo
7~ N\
PoTS

For Sy, we also parametrize using x and y, but now z = 0 so it’s much simpler.

7(x,y) = (x,y,0)
Px(xy) = (1,0,0) =1
fyxy) = (0,1,0) =]
The domain is the same disc,D, as for S1.
Ty xTy =ix] =k
We observe that this vector points upward and we need the downward normal, so we use the negative
and have

(-5 - [[(-3120) -00-1my
S2 D

=0
Finally
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