
Eigenvalues and Eigenvectors

Vector Spaces

Definition. A vector space V (or linear space) is a collection of objects together with two operations
vector addition () and scalar multiplication () which has the following properties:

(1) For all u , v  V, there corresponds a unique vector u  v in V (closure)

(2) u  v  v  u (commutivity)

(3) u  v   w  u  v  w (associativity)

(4) There exists a vector 0  V such that u  0  u for all u  V (identity)

(5) For each u  V there exists a unique vector −u such that u  −u   0

(6) For every scalar c and for each vector u  V there exists a unique vector c  u in V.

(7) For all scalars c and d and all vectors u , v  V
(i) cd  u   cd  u

(ii) 1  u  u
(iii) c  u  v   c  u  c  v

(iv) c  d  u  c  u  d  u
Example. Let V consist of vectors which are points in n dimensional Euclidian space, i.e.
u  u1,u2, . . . ,un .

Define addition by

u  v  u1, . . . ,un  v1, . . . ,vn  u1  v1, . . . ,un  vn

and scaler multiplication by

c  u  c u1 , . . . ,un  cu1, . . . ,cun

.
This space is called Vn.

Remark. If we let A  aij nn be a square matrix of scalars and write vectors in Vn as
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X 

x1

.

.

.

xn

then the product Y  AX is also a vector in Vn. The product Y  AX is called a linear transformation of
the vector X.
Very often in mathematics one wants to know which vectors, if any, are left unchanged in direction by
the transformation. Two nonzero vectors have the same direction if and only if one is a nonzero scalar
multiple of the other. Thus if AX is to have the same direction as X we want

AX  rX r some constant

Thus we want to know which vectors X satisfy

AX  rX  rIX

or

A − rIX  0

This last equation is equivalent to the system

a11 − rx1  a12x2   a1nxn  0

a21x1  a22 − rx2   a2nxn  0

  

an1x1  an2x2   ann − rxn  0

    1

By Cramer’s rule if the determinant of the coefficients of the above system is not zero then the only
solution to 1 is

x1  x2    xn  0,

the trivial solution.
This implies X  0. Since we want a nontrivial solution (nonzero vectors), we want

detA − rI  0

i.e.
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a11 − r a12 . . a1n

a21 a22 − r

.

.

an1 . . . ann − r

 0

Now

detA − rI  −1nrn   polynomial of degree n in r.

Thus if r is a root of

pr  detA − rI
there will exist a solution x1, . . . ,xn of A − rIX  0 such that not all the xi’s are zero. This  that
the vector

X 

x1

.

.

.

xn

for this value of r and these xi’s satisfies AX  rX and hence has the same direction under
transformation.
The values of r such that detA − rI  0 are called eigenvalues. The vector X corresponding to an
eigenvalue is called an eigenvector of the matrix A.

Example Find the eigenvalues and eigenvectors for A 
3 −4

−4 −3
.

detA − rI 
3 − r −4

−4 −3 − r
 −3 − r3  r − 16  −9  r2 − 16  r2 − 25

Therefore

pr  r2 − 25

and pr  0  r  5. Thus the eigenvalues are 5.
The system

A − rIX  0

is
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3 − rx1 − 4x2  0

− 4x1  −3 − rx2  0

If r  5 
−2x1 − 4x2  0

−4x1 − 8x2  0
 x1  2x2  0 or x1  −2x2

 eigenvector −2t, t orX1 
−2t

t
or just

−2

1

If r  −5 
8x1 − 4x2  0

−4x1  2x2  0
 2x1  x2

 eigenvector t, 2t or X2 
t

2t
or just

1

2

Note that

AX2 
3 −4

−4 −3

t

2t


−5t

−10t
 −5

t

2t
 −5X2

Example Find the eigenvalues and eigenvectors of

A 

2 0 0

1 0 2

0 0 3

Solution:

2 − r 0 0

1 −r 2

0 0 3 − r

2 − r 0

1 −r

0 0

 −r3 − r2 − r

Thus the eigenvalues are r  0,2,3.
The system A − rIX  0 becomes

2 − rx1  0

x1 − rx2  2x3  0

3 − rx3  0

For the eigenvalue 0 we have x1  x3  0, which gives the eigenvector

0

1

0

. For the eigenvalue 3
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we have x1  0,x2  2
3

x3 which yields the eigenvector

0

1
3
2

.

For the eigenvalue 2 we have x1 − 2x2  2x3  0,x3  0 which yields the eigenvector

2

1

0

.

You may view a slide show that illustrates how to find the eigenvalues and eigenvectors of a matrix by
holding down the Ctrl key and clicking on Eigenvalues. You may download the tex file from which this
slide show was made by holding down the Ctrl key and clicking on Eigenvalue Text.
Example Repeated Eigenvalues Find the eigenvalues and eigenvectors of

A 

1 −2 4

3 −4 4

3 −2 2

Solution: det A − rI 

1 − r −2 4

3 −4 − r 4

3 −2 2 − r

 − r3 − r2  8r  12  −r − 3r  22

Thus the eigenvalues are 3 and −2 and −2 is a repeated eigenvalue with multiplicity two. The system of
equations A − rIX  0 is, for this matrix,

1 − rx1 − 2x2  4x3  0

3x1 − 4  rx2  4x3  0

3x1 − 2x2  2 − rx3  0

Setting r  3 yields

− 2x2 − 2x2  4x3  0

3x1 − 7x2  4x3  0

3x1 − 2x2 − x3  0

The augmented matrix for this system is

−2 −2 4 0

3 −7 4 0

3 −2 −1 0

, row echelon form:

1 0 −1 0

0 1 −1 0

0 0 0 0

so the solutions of the above system are also the solutions of the system

x1 − x3  0

x2 − x3  0

Thus x1  x2  x3 and an eigenvector corresponding to r  3 is

1

1

1

.

Setting r  −2 in the system A − rIX  0 yields
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3x1 − 2x2  4x3  0

3x1 − 2x2  4x3  0

3x1 − 2x2  4x3  0

The augmented matrix for this system is

3 −2 4 0

3 −2 4 0

3 −2 4 0

, row echelon form:

1 − 2
3

4
3

0

0 0 0 0

0 0 0 0

.

Thus, we have the one equation

x1 − 2
3

x2  4
3

x3  0

To get two linearly independent vectors we first take x3  0 and get x1  2
3

x2. Letting x2  1 yields

the eigenvector

2
3

1

0

.

To get a second vector we set x2  0 and get x1  − 4
3

x3. Letting x3  1 yields the eigenvector

− 4
3

0

1

.

We may check our results using SNB.

1 −2 4

3 −4 4

3 −2 2

, eigenvectors:

2
3

1

0

,

− 4
3

0

1

↔ −2,

1

1

1

↔ 3

Example Complex Eigenvalues Find the eigenvalues and eigenvectors of the matrix A.

A 

2 −1 0

2 1 1

0 2 1

Solution. We note the following.
If r1    i is a solution of the equation that determines the eigenvalues, namely,

pr  detA − rI  0

then r2   − i is also a solution of this equation, and hence is an eigenvalue. Recall that r2 is called
the complex conjugate of r1 and r1  r2.
Let z  a  ib, where a and b are real vectors, be an eigenvector corresponding to r1. Then it is not
hard to see that z  a − ib is an eigenvector corresponding to r2. Since

Az r1z r1Iz

then

A − r1Iz  0
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Taking the conjugate of this equation and noting that since A and I are real matrices then A  A and
I  I

A − r1Iz  A − r1Iz  A − r2Iz  0

so z is an eigenvector corresponding to r2.

We find the eigenvalues for matrix A first.

detA − rI 

2 − r −1 0

2 1 − r 1

0 2 1 − r

2 − r −1

2 1 − r

0 2

 2 − r1 − r2 − 212 − r  21 − r

 2 − r 1 − 2r  r2 − 2  2 − 2r

 2 − r −1 − 2r  r2  2 − 2r

 −2  r − 4r  2r2  2r2 − r3  2 − 2r

 −5r  4r2 − r3  −r r2 − 4r  5

Clearly one root is r  0. Using the quadratic formula, the others are

r  4  42 − 20
2

 4  −4
2

 2  i

The system of equations for the eigenvectors is

2 − rx1 − x2  0

2x1  1 − rx2  x3  0

2x2  1 − rx3  0

For r  0, we solve

A − 0IX  0

Using elimination on the augmented matrix, we have

2 −1 0 0

2 1 1 0

0 2 1 0

→

2 −1 0 0

0 2 1 0

0 2 1 0

→

2 −1 0 0

0 2 1 0

0 0 0 0

→

1 −. 5 0 0

0 1 .5 0

0 0 0 0

→

1 0 .25 0

0 1 .5 0

0 0 0 0

Thus x1  − 1
4

x3 and x2  − 1
2

x3 where x3 is arbitrary. Letting x3  4 we have that the eigenvector
is any multiple of
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−1

−2

4

Similarly, for r  2  i, we have the following. [The first step is an extra step of multiplying the first
row by 2i to show how this goes.]

−i −1 0 0

2 −1 − i 1 0

0 2 −1 − i 0

→

2 −2i 0 0

2 −1 − i 1 0

0 2 −1 − i 0

→

2 −2i 0 0

0 −1  i 1 0

0 2 −1 − i 0

→

2 −2i 0 0

0 2 −1 − i 0

0 0 0 0

→

2 0 1 − i 0

0 2 −1 − i 0

0 0 0 0

Thus 2x1  −1  ix3 and 2x2  1  ix3. Again, the third component is arbitrary and any multiple
of

−1  i

1  i

2

is an eigenvector.
Finally, since the entries in the matrix are all real, both eigenvalues and eigenvectors come in complex
conjugate pairs and for r  2 − i, eigenvectors are multiples of

−1 − i

1 − i

2

.
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