Ma 227

The Directional Derivative and the Gradient

Let $\Phi(x, y, z)$ be a scalar function with first partial derivatives Φ_{x}, Φ_{y}, and Φ_{z} in some region of x, y, z-space. Let $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ be the vector drawn from the origin to the point $P=(x, y, z)$. Suppose that we move from P to a nearby point $Q=(x+\Delta x, y+\Delta y, z+\Delta z)$.

Then Φ will change by an amount $\Delta \Phi$ where

$$
\Delta \Phi=\Phi_{x} \Delta x+\Phi_{y} \Delta y+\Phi_{z} \Delta z+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y+\epsilon_{3} \Delta z
$$

where $\epsilon_{1}, \epsilon_{2}$, and $\epsilon_{3} \rightarrow 0$ as the point $Q \rightarrow P$. If we divide the change $\Delta \Phi$ by the distance $\Delta s=|\Delta \vec{r}|$ between P and Q, we obtain a measure of the rate at which Φ changes when we move from P to Q :

$$
\frac{\Delta \Phi}{\Delta s}=\Phi_{x} \frac{\Delta x}{\Delta s}+\Phi_{y} \frac{\Delta y}{\Delta s}+\Phi_{z} \frac{\Delta z}{\Delta s}+\epsilon_{1} \frac{\Delta x}{\Delta s}+\epsilon_{2} \frac{\Delta y}{\Delta s}+\epsilon_{3} \frac{\Delta z}{\Delta s}
$$

Example:

If $\Phi(x, y, z)$ represents the temperature at any point $P(x, y, z)$ then $\frac{\Delta \Phi}{\Delta s}$ is the average rate of change in temperature per unit length at the point P in the direction in which Δs is measured.

The limiting value of $\frac{\Delta \Phi}{\Delta s}$ as $\Delta s \rightarrow 0$, that is, as $Q \rightarrow P$ along the segment $P Q$, is called the derivative of Φ in the direction $P Q$ or simply the directional derivative of Φ. Since $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \rightarrow 0$ as $Q \rightarrow P$, we have that

$$
\frac{d \Phi}{d s}=\frac{\partial \Phi}{\partial x} \frac{d x}{d s}+\frac{\partial \Phi}{\partial y} \frac{d y}{d s}+\frac{\partial \Phi}{\partial z} \frac{d z}{d s}
$$

The first factor in each term of the products in the expression above for the directional derivative depend only on Φ and the point P. The second factors in the products are independent of Φ and depend on the direction in which the derivative is being computed. We may rewrite the expression above in the form

$$
\begin{aligned}
\frac{d \Phi}{d s} & =\left(\Phi_{x} \vec{i}+\Phi_{y} \vec{j}+\Phi_{z} \vec{k}\right) \cdot\left(\frac{d x}{d s} \vec{i}+\frac{d y}{d s} \vec{j}+\frac{d z}{d s} \vec{k}\right) \\
& =\left(\Phi_{x} \vec{i}+\Phi_{y} \vec{j}+\Phi_{z} \vec{k}\right) \cdot \frac{d \vec{r}}{d s}
\end{aligned}
$$

The vector $\Phi_{x} \vec{i}+\Phi_{y} \vec{j}+\Phi_{z} \vec{k}$ is known as the gradient of Φ or $\operatorname{grad} \Phi$. Thus

$$
\operatorname{grad} \Phi=\Phi_{x} \vec{i}+\Phi_{y} \vec{j}+\Phi_{z} \vec{k}
$$

The notation $\nabla \Phi$ is often used for $\operatorname{grad} \Phi$. In this notation the operator ∇ is defined as

$$
\nabla=\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}
$$

Example:

Let $\Phi(x, y, z)=x y z+3 x^{4} y^{2} z^{3}$. Then $\nabla \Phi=\left(y z+12 x^{3} y^{2} z^{3}\right) \vec{i}+\left(x z+6 x^{4} y z^{3}\right) \vec{j}+\left(x y+9 x^{4} y^{2} z^{2}\right)$

Example:

We may use SNB to find the gradient of a function. However, SNB writes vectors as ordered triples instead of the form given in the previous example. Thus
$\nabla\left(x y z+3 x^{4} y^{2} z^{3}\right)=\left(y z+12 x^{3} y^{2} z^{3}, x z+6 x^{4} y z^{3}, x y+9 x^{4} y^{2} z^{2}\right)$

With this notation we may write the directional derivative of Φ in the form

$$
\frac{d \Phi}{d s}=\operatorname{grad} \Phi \cdot \frac{d \vec{r}}{d s}=\nabla \Phi \cdot \frac{d \vec{r}}{d s}
$$

Remark: Since Δs is the length of $\Delta \vec{r}$ then $\frac{\Delta \vec{r}}{\Delta s}$ and hence $\frac{d \vec{r}}{d s}$ are unit vectors. Therefore, $\nabla \Phi \cdot \frac{d r}{d s}$ is the projection of $\operatorname{grad} \Phi$ in the direction of $\frac{d r}{d s}$. Thus $\nabla \Phi$ has the property that its projection in any direction is equal to the derivative of Φ in that direction. Since the maximum projection of a vector is the vector itself, it is clear that $\operatorname{grad} \Phi$ extends in the direction of the greatest rate of change of Φ and has that rate of change for its length.

Example:

What is the directional derivative of the function $\Phi=x y^{2}+y z^{3}$ at $(2,-1,1)$ in the direction of the vector $\vec{i}+2 \vec{j}+2 \vec{k}$?
$\nabla\left(x y^{2}+y z^{3}\right)=\left(y^{2}, 2 x y+z^{3}, 3 y z^{2}\right)$ and a unit vector in the given direction is $\frac{1}{3}(1,2,2)$. Thus
$\frac{d \Phi}{d s}=\left(y^{2}, 2 x y+z^{3}, 3 y z^{2}\right) \cdot \frac{1}{3}(1,2,2)=\frac{1}{3} y^{2}+\frac{4}{3} x y+\frac{2}{3} z^{3}+2 y z^{2}$
Hence
$\left.\frac{d \Phi}{d s}\right|_{(2,-1,1)}=\frac{1}{3}(-1)^{2}+\frac{4}{3}(2)(-1)+\frac{2}{3}(1)^{3}+2(-1)(1)^{2}=-\frac{11}{3}$.

Remark There is a very nice discussion of the gradient at Gradient. There is a discussion of the gradient as well as a couple of very nice Java applets. This site was done at RPI.

Let us now consider the operator $\nabla=\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}$. Given any other vector $\vec{F}=F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}$ where $\vec{F}=\vec{F}(x, y, z)$ we can consider $\nabla \cdot \vec{F}$, called the divergence of \vec{F}, and $\nabla \times \vec{F}$, called the curl \vec{F}

$$
\begin{aligned}
\nabla \cdot \vec{F}=\left(\vec{i} \frac{\partial}{\partial x}\right. & \left.+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\right) \cdot\left(F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}\right)=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=\operatorname{div} \vec{F} \\
\nabla \times \vec{F} & =\operatorname{curl} \vec{F}=\left(\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\right) \times\left(F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}\right) \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \vec{i}+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \vec{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \vec{k} \\
& =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
\end{aligned}
$$

Example Let $\vec{F}=2 x \vec{i}+3 y^{2} \vec{j}+2 x z \vec{k}$. Find $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$

$$
\begin{gathered}
\operatorname{div} \vec{F}=2+6 y+2 z \\
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x & 3 y^{2} & 2 x z
\end{array}\right|=0 \vec{i}+0 \vec{j}+0 \vec{k}-0 \vec{k}-0 \vec{i}-2 z \vec{j}
\end{gathered}
$$

