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Page 965 # 3, 5, 9, Stokes’ Theorem
Section 13.7

3. Fx,y, z  x2z2i y2z2j xyzk, S is the par of the paraboloid z  x2  y2 the lies inside the
cylinder x2  y2  4 oriented upward.

The parabloid intersects the cylinder in the circle x2  y2  4, z  4. The boundary curve C should be
oriented in the counterclockwise direction when viewed from above, so a vector equation of C is

rt  2cos ti 2sin tj 4k, 0 ≤ t ≤ 2

Hence r′t  −2sin ti 2cos tj

Frt  4cos2t 16i 4sin2t 16j 2cos t2sin t4k

By Stokes’ Theorem
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5. C is the square in the plane z  −1. By 3
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where S1 is the original cube without the bottom and S2 is the bottom face of the cube.

curlF  x2zi xy − 2xyzj y − xzk

For S2 we choose n  k so that C has the same orientation for both surfaces. Then

curlF  n  y − xz  x  y

since z  −1. Thus
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9.

curlF  xexy − yi− yexy − yj− 2z − zk

Take the surface S to be the disk x2  y2 ≤ 16, z  5. Since C is oriented clockwise (from above), we
orient S upward. Then n  k and curlF  n  2z − z on S were z  5. Thus
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