Matrices

The Definition of a Matrix

An $m \times n$ matrix is a rectangular array of quantities arranged in *m* rows and *n* columns. (We say the matrix is of order *m* by *n*).

Notation: Let a_{ij} $1 \le i \le m$ $1 \le j \le n$ be *mn* quantities. Then the matrix associated with these a_{ij} 's is denoted by

The quantities a_{ij} are called the elements of the matrix A.

Definition. Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are said to be equal \Leftrightarrow they contain the same number of rows and columns and $a_{ij} = b_{ij}$ (for all) *i*, *j*.

Special Matrices

There are some special matrices which should be introduced.

Both column and row matrices are referred to as vectors.

When
$$m = n$$
, the we have a square matrix
$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

The matrix A with every element zero is called the zero matrix. We will write A = 0.

The identity matrix may be defined as follows: let $\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$ The square matrix $I = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$ is known as the identity matrix

The square matrix $I = [\delta_{ij}]_{n \times n}$ is known as the identity matrix.

$$I = \begin{bmatrix} 1 & 0 & . & 0 \\ 0 & 1 & 0 & 0 \\ . & & 0 \\ 0 & 0 & . & 1 \end{bmatrix}$$

Thus the identity matrix is the matrix with 1's along its diagonal and 0's everywhere else.

Operations on Matrices

Addition:

Let $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$. Then

$$A + B = \left[a_{ij} + b_{ij}\right]_{m \times n}$$

Thus A + B is a matrix of order $m \times n$ whose i, j entry is $a_{ij} + b_{ij}$.

Example:

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 6 & 4 & 7 \\ -1 & -2 & -6 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 1+6 & -2+4 & 3+7 \\ 0-1 & -1-2 & 6-6 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 10 \\ -1 & -3 & 0 \end{bmatrix}$$

Example:

We can use SNB to add matrices. Thus

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 6 \end{bmatrix} + \begin{bmatrix} 6 & 4 & 7 \\ -1 & -2 & -6 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 10 \\ -1 & -3 & 0 \end{bmatrix}$$

Subtraction:

Let $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$. Then A - B is the matrix defined by

$$A - B = \left[a_{ij} - b_{ij}\right]_{m \times n}$$

Note: One can add and subtract only matrices of the same order. Such matrices are called conformable.

Scalar Multiplication

Let *k* be a scalar and *A* a matrix of real numbers of order $m \times n$. Then

$$kA = \left[k \cdot a_{ij}\right]_{m \times n}$$

Example:

	-1	0	5	7		-5	0	25	35	
5	2	-8	4	22		10	-40	20	110	
5	-7	1	0	6		-35	5	0	30	
	8	3	-3	4		40	15	-15	20	

Some Properties of Addition and Scalar Multiplication

We now list the basic properties of vector addition and scalar multiplication.

Theorem

Let A, B and C be conformable $m \times n$ matrices whose entries are real numbers, and k and p arbitrary scalars. Then

- 1. A + B = B + A.
- 2. A + (B + C) = (A + B) + C
- 3. There is an $m \times n$ matrix 0 such that 0 + A = A for each A.
- 4. For each A there is an $m \times n$ matrix -A such that A + (-A) = 0.
- 5. k(A+B) = kA + kB
- 6. (k+p)A = kA + pA
- 7. (kp)A = k(pA).

Proof:

(1)
$$A + B = [a_{ij}]_{m \times n} + [b_{ij}]_{m \times n} = [a_{ij} + b_{ij}]_{m \times n}$$

=

$$[b_{ij} + a_{ij}]_{m \times n}$$
 commutat

commutativity of real numbers.

$$= B + A$$
(4) Note that $(-1)A = [-a_{ij}]_{m \times n} \implies A + (-1)A = 0_{m \times n}$

Remark: We denote (-1)A by -A.

The Transpose of a Matrix

If *A* is an $m \times n$ matrix, the transpose of *A*, denoted A^T , is the $n \times m$ matrix whose entry a_{st} is the same as the entry a_{ts} in the matrix *A*. Thus one gets the transpose of *A* by interchanging the rows and the columns of *A*.

Example:

Γ	1	0	-1	Т	Γ	1	2	4	٦
	2	3	-2	=		0	3	10	
L	4	10	9			-1	-2	9	

We note the following:

- $(A^T)^T = A$.
- $(A+B)^T = A^T + B^T$.
- For any scalar r, $(rA)^T = rA^T$.
- If A is a diagonal matrix, then $A = A^T$.
- A square matrix is said to be symmetric if $A^T = A$ and skew-symmetric if $A^T = -A$.

Example:

_	_	-						
Γ	1	2	3		0	2	3	
l	2	-1	4	is symmetric and	-2	0	4	is skew-symmetric.
	3	4	0		-3	-4	0	