
Ma 227 Review of Gradient, Curl, Divergence, and Line
Integrals

Vector Fields, Gradient, Divergence, Curl
Definition Let D denote a subset of the plane. A vector field on D is a function F
that assigns to each point x,y in D a two-dimensional vector Fx,y. In terms of its
component functions, the vector field F is given by

Fx,y  Px,yi  Qx,yj  〈Px,y,Qx,y
or, for short,

F  Pi  Qj

 Definition Let D denote a subset of space. A vector field on D is a function
F that assigns to each point x,y, z in D a three-dimensional vector Fx,y, z.
In terms of its component functions, the vector field F is given by

Fx,y, z  Px,y, zi  Qx,y, zj  Rx,y, zk  〈Px,y, z,Qx,y, z,Rx,y, z
or, for short,

F  Pi  Qj  Rk

Definition If f is a scalar function of two variables, its gradient vector field
∇f is defined by

∇f  ∂f
∂x i  ∂f∂y j

If f is a scalar function of three variables, its gradient vector field ∇f is defined
by

∇f  ∂f
∂x i  ∂f∂y j  ∂f∂z k

Definition F is a conservative vector field if there exists a scalar function f
such that ∇f  F. In this case f is called a potential function for F.

Example:
Let x,y, z  xyz  3x4y2z3. Then ∇  yz  12x3y2z3i xz  6x4yz3j xy  9x4y2z2

Divergence
A vector field is a vector-valued function. If

Fx,y, z  px,y, z,qx,y, z, rx,y, z  pi qj rk

is a vector field, then the scalar

∇  F  divF  ∂p∂x a,b,c  ∂q∂y a,b,c  ∂r∂z a,b,c

is the divergence of F at the point a,b,c.

Curl
If Fx,y, z  px,y, z,qx,y, z, rx,y, z  pi qj rk is a vector field, then the vector

∇  F  ∂r
∂y −

∂q
∂z ,

∂p
∂z −

∂r
∂x ,

∂q
∂x −

∂p
∂y  ∂r

∂y −
∂q
∂z i ∂p

∂z −
∂r
∂x j ∂q

∂x −
∂p
∂y k
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is called the curl of F.

Example:
Let F  xyi xz2j zex sinyk. Find divF and curlF.

∇  F  divF  y  ex siny

∇  F  curlF 

i j k

∂
∂x

∂
∂y

∂
∂z

xy xz2 zex siny

 zex cosy − 2xzi− zex sinyj z2 − xk

Line Integrals
We define the line integral as follows:
A curve C may be described in three dimensions via

x  ft; y  gt; z  ht a ≤ t ≤ b

or

r t  ft i  gt j  htk a ≤ t ≤ b

If

Fx,y, z  Px,y, z i  Qx,y, z j  Rx,y, zk

then


C

F  d r  
C

Pdx  Qdy  Rdz  
a

b
Fft,gt,ht  r

′
tdt

 
a

b
Pft,gt,htf ′t  Qft,gt,htg ′t  Rft,gt,hth ′tdt

Example:

Evaluate 
C

F ∙ dr , where F  x  2y i  x2 − y2 j and C is the line segment joining 0,0 and

1,1.

SOLUTION

We have to parametrize F and r first. Since we are moving from 0 to 1 along the line x  y,
it behoves us to set x  y  t as our parameter.
Then

F  t  2t i  t2 − t2 j  3t i .

Next,

r  xt i  yt j  t i  t j .

r
′
t  i  j .
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Finally,

F ∙ r
′
t  3t i   i  j   3t

Integrate now:


C

F ∙ dr  
0

1
3t dt  3

2
.

Path Independence
Certain line integrals depend only on the integrand and endpoints A and B. Such integrals are called
path independent or are said to be independent of the path.
Often one must consider situations in which the path C is a closed curve. Hence the starting point A and
ending point B are the same. This is usually written as


C

F  d r .

For plane curves we take the positive direction of C so that the interior of the closed curve is always to
the left as C is traversed.

The following are equivalent:


C

F  d r is path independent ↔ there exists a G such that F  ∇G

↔ 
C

F  d r  0 for any closed path C

↔ ∇  F  curlF  0

Note in two dimensions with F  Px,yi Qx,yj the last condition becomes

Qx  Py

Example:

Let F  y2z3 i  2xyz3 j  3xy2z2  zk . Show that curl F  0. Evaluate 
C

F ∙ dr, where C is the

ellipse in x,y, z -space given by
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x2

4
 y2

9
 1, z  3.

SOLUTION

curl F  ∇  F  det

i j k
∂
∂x

∂
∂y

∂
∂z

y2z3 2xyz3 3xy2z2  z

 6xyz2 i  2yz3 k  3y2z2 j − 2yz3 k − 6xyz2 i − 3y2z2 j  0.

We have shown that for the given F, curlF  0. Therefore the integral is path-independent, so the
integral around a closed curve is zero. Thus 

C
F ∙ dr  0.

Example:

Consider the 
C

F  dr, where F  2xyz  z2yi x2z  z2xj x2y  2xyzk. Show that ∇  F  0.

What does this tell you about 
C

F  dr , where C is any closed curve?

SOLUTION

∇  F  curl F 

i j k

∂
∂x

∂
∂y

∂
∂z

2xyz  z2y x2z  z2x x2y  2xyz

 x2  2xz − x2 − 2zxi− 2xy  2yz − 2xy − 2zyj 2xz  z2 − 2xz − z2k

 0

Then 
C

F  dr  0 for any closed curve C. Or, equivalently, 
C

F  dr is independent of the path

taken between two given points.

Example

Find a function x,y, z such that ∇  F, where F is the vector field above.

SOLUTION

F  ∇  ∂∂x i ∂∂y j ∂∂z k We set equal the corresponding components.

∂
∂x  2xyz  z2y 

x,y, z  x2yz  xyz2  hy, z

∂
∂y  x2z  z2x  hy  x2z  z2x

Thus h  gz
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∂
∂z  x2y  2xyz  g ′z  x2y  2xyz

gz  C, a constant

Finally, we have

x,y, z  x2yz  xyz2  C

Example:
Evaluate


C
x  2ydx  x2 − y3dy

where C consists of the segments from 1,1 to 3,1 and 3,1 to 3,−1. Sketch C.
Solution: The path C is shown below.

1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

1.0

x

y

Let C1 be the segment from 1,1 to 3,1 and C2 be the segment from 3,1 to 3,−1. Then
C  C1  C2.


C
x  2ydx  x2 − y3dy  

C1

x  2ydx  x2 − y3dy  
C2

x  2ydx  x2 − y3dy

 
C1

x  21dx  
C2

32 − y3 dy

 
1

3
x  2dx  

1

−1
9 − y3dy  8 − 18  −10

Green’s Theorem
Theorem: Let Px,y and Qx,y be functions of two variables which are continuous and have
continuous first partial derivatives in some rectangular region H in the x,y − plane. If C is a simple,
closed, piecewise smooth curve lying entirely in H, and if R is the bounded region enclosed by C, then


C
Px,ydx  Qx,ydy   

R

∂Q
∂x −

∂P
∂y dA

Note: Green’s Theorem applies only to a closed curve.
Corollary: Let R be a bounded region in the x,y − plane. Then the area of R is given by
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A  1
2 C

xdy − ydx  
C

xdy  −
C

ydx

Example:
Evaluate


C
1  tanxdx  x2  eydy

Where C is the positively oriented boundary of the region R enclosed by the curves y  x , x  1, and
y  0. Be sure to sketch C.
Solution:
The region enclosed by C is shown below.
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1.0

x

y

We use Green’s Theorem to evaluate the integral since C is a closed curve.


C
1  tanxdx  x2  eydy   

R

∂x2  ey
∂x − ∂1  tanx

∂y dA

 
0

1 
0

x
2x − 0dydx  2 

0

1
x

3
2 dx  4

5

Example:
Verify that Green’s Theorem is true for the line integral


C

xydx  x2dy

where C is the triangle with vertices 0,0, 1,0, and 1,2.
Solution:
The triangle is shown below. 0,0,1,0,1,2,0,0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

x

y
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The boundary consists of 3 line segments C1 : 0 ≤ x ≤ 1,y  0;C2 : 0 ≤ y ≤ 2,x  1;C3 : y  2x,
x  1 to 0.
Thus


C

xydx  x2dy  
0

1
0dx  

0

2
1dy  

1

0
2x2  2x2dx  2

3

Also


C

xydx  x2dy  
R

∂x2
∂x − ∂xy

∂y dA

 
R
2x − xdA

 
0

1 
0

2x
xdydx  

0

2 
y
2

1
xdxdy  2

3

Example:
Find the area of the region bounded by the hypocycloid with vector equation

rt  cos3t i sin3t j, 0 ≤ t ≤ 2.

A  
C

xdy  −
C

ydx  1
2  xdy − ydx

We have x  cos3t,dx  3cos2t− sin tdt, and y  sin3t,dy  3sin2tcos tdt.

Using A  
C

xdy : A  
C

xdy  
0

2
cos3t3sin2tcos tdt  3

8
.

Example:
Evaluate


C
1  10xy  y2dx  6xy  5x2dy

where C is the square with vertices 0,0, a, 0, a,a, 0,a with counterclockwise orientation.
Solution: We use Green’s Theorem since the path is closed. Now

Px,y  1  10xy  y2 and Qx,y  6xy  5x2

Thus

Py  10x  2y and Qx  6y  10x

Qx − Py  4y

By Green’s Theorem


C
1  10xy  y2dx  6xy  5x2dy  

R

Qx − PydA

 
0

a 
0

a
4ydxdy  2a3

Example:
Evaluate


C

x2ydx − xy2dy
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where C is the circle x2  y2  4 with counterclockwise orientation.
Solution: Since the path is a closed curve, we may use Green’s Theorem to evaluate the line integral.
Thus


C

x2ydx − xy2dy  
x2y2≤4

∂−xy2
∂x − ∂x

2y
∂y dA

 
x2y2≤4

−y2 − x2dA  −
0

2 
0

2
r2  rdrd

 −8

Example:
Verify Green’s theorem for


C
4x − 2ydx  2x  6ydy

where C is the ellipse x  2cos, y  sin, 0 ≤  ≤ 2. (Recall that the area of the ellipse
x2

a2  y2

b2  1 is ab. )

SOLUTION

For this ellipse, a  2 and b  1. Let G be the interior of C. Green’s theorem states that the two
integrals 

C
Pdx  Qdy and 

G
Qx − Pydxdy are equal. We must verify this.

Since Qx  2 and Py  −2,


G
Qx − Pydxdy  

G
4dxdy  4 

G
dxdy  4AreaofG  421  8

The ellipse is already parametrized by . Since dx  −2sind and dy  cosd,


C

Pdx  Qdy  
C
4x − 2ydx  2x  6ydy

 
0

2
8cos − 2sin−2sin  4cos  6sincosd

 
0

2
−16sincos  4sin2  4cos2  6sincosd

 
0

2
4 − 10sincosd  8
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