Ma 227 Review of Gradient, Curl, Divergence, and Line Integrals

Vector Fields, Gradient, Divergence, Curl

Definition Let D denote a subset of the plane. A vector field on D is a function \mathbf{F} that assigns to each point (x, y) in D a two-dimensional vector $\mathbf{F}(x, y)$. In terms of its component functions, the vector field \mathbf{F} is given by

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\langle P(x, y), Q(x, y)\rangle
$$

or, for short,

$$
\mathbf{F}=P \mathbf{i}+Q \mathbf{j}
$$

- Definition Let D denote a subset of space. A vector field on D is a function \mathbf{F} that assigns to each point (x, y, z) in D a three-dimensional vector $\mathbf{F}(x, y, z)$. In terms of its component functions, the vector field \mathbf{F} is given by

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle
$$

or, for short,

$$
\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}
$$

Definition If f is a scalar function of two variables, its gradient vector field ∇f is defined by

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

If f is a scalar function of three variables, its gradient vector field ∇f is defined by

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

Definition $\quad \mathbf{F}$ is a conservative vector field if there exists a scalar function f such that $\nabla f=\mathbf{F}$. In this case f is called a potential function for \mathbf{F}.

Example:

Let $\Phi(x, y, z)=x y z+3 x^{4} y^{2} z^{3}$. Then $\nabla \Phi=\left(y z+12 x^{3} y^{2} z^{3}\right) \vec{i}+\left(x z+6 x^{4} y z^{3}\right) \vec{j}+\left(x y+9 x^{4} y^{2} z^{2}\right)$

Divergence

A vector field is a vector-valued function. If

$$
\vec{F}(x, y, z)=[p(x, y, z), q(x, y, z), r(x, y, z)]=\vec{p}+q \vec{j}+r \vec{k}
$$

is a vector field, then the scalar

$$
\nabla \cdot \vec{F}=\operatorname{div} \vec{F}=\frac{\partial p}{\partial x}(a, b, c)+\frac{\partial q}{\partial y}(a, b, c)+\frac{\partial r}{\partial z}(a, b, c)
$$

is the divergence of F at the point (a, b, c).

Curl

If $\vec{F}(x, y, z)=(p(x, y, z), q(x, y, z), r(x, y, z))=p \vec{i}+q \vec{j}+r \vec{k}$ is a vector field, then the vector

$$
\nabla \times \vec{F}=\left(\frac{\partial r}{\partial y}-\frac{\partial q}{\partial z}, \frac{\partial p}{\partial z}-\frac{\partial r}{\partial x}, \frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right)=\left(\frac{\partial r}{\partial y}-\frac{\partial q}{\partial z}\right) \vec{i}+\left(\frac{\partial p}{\partial z}-\frac{\partial r}{\partial x}\right) \vec{j}+\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) \vec{k}
$$

is called the curl of F.

Example:

Let $\vec{F}=x y \vec{i}+x z^{2} \vec{j}+z e^{x} \sin y \vec{k}$. Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$.

$$
\begin{gathered}
\nabla \cdot \vec{F}=\operatorname{div} \vec{F}=y+e^{x} \sin y \\
\nabla \times \vec{F}=\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & x z^{2} & z e^{x} \sin y
\end{array}\right| \\
=\left(z e^{x} \cos y-2 x z\right) \vec{i}-z e^{x} \sin y \vec{j}+\left(z^{2}-x\right) \vec{k}
\end{gathered}
$$

Line Integrals

We define the line integral as follows:
A curve C may be described in three dimensions via

$$
x=f(t) ; \quad y=g(t) ; \quad z=h(t) \quad a \leq t \leq b
$$

or

$$
\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k} \quad a \leq t \leq b
$$

If

$$
\vec{F}(x, y, z)=P(x, y, z) \vec{i}+Q(x, y, z) \vec{j}+R(x, y, z) \vec{k}
$$

then

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{C} P d x+Q d y+R d z=\int_{a}^{b} \vec{F}(f(t), g(t), h(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{a}^{b}\left\{P(f(t), g(t), h(t)) f^{\prime}(t)+Q(f(t), g(t), h(t)) g^{\prime}(t)+R(f(t), g(t), h(t)) h^{\prime}(t)\right\} d t
\end{aligned}
$$

Example:

Evaluate $\int_{C} \vec{F} \bullet \overrightarrow{d r}$, where $\vec{F}=(x+2 y) \vec{i}+\left(x^{2}-y^{2}\right) \vec{j}$ and C is the line segment joining $(0,0)$ and (1,1).

SOLUTION

We have to parametrize \vec{F} and \vec{r} first. Since we are moving from 0 to 1 along the line $x=y$, it behoves us to set $x=y=t$ as our parameter.
Then

$$
\vec{F}=(t+2 t) \vec{i}+\left(t^{2}-t^{2}\right) \vec{j}=3 t \vec{i}
$$

Next,

$$
\begin{aligned}
\vec{r} & =x(t) \vec{i}+y(t) \vec{j}=t \vec{i}+t \vec{j} . \\
\vec{r}^{\prime}(t) & =\vec{i}+\vec{j} .
\end{aligned}
$$

Finally,

$$
\vec{F} \bullet \vec{r}^{\prime}(t)=3 t \vec{i} \cdot(\vec{i}+\vec{j})=3 t
$$

Integrate now:

$$
\int_{C} \vec{F} \bullet \overrightarrow{d r}=\int_{0}^{1} 3 t d t=\frac{3}{2}
$$

Path Independence

Certain line integrals depend only on the integrand and endpoints A and B. Such integrals are called path independent or are said to be independent of the path.
Often one must consider situations in which the path C is a closed curve. Hence the starting point A and ending point B are the same. This is usually written as

$$
\oint_{C} \vec{F} \cdot d \vec{r} .
$$

For plane curves we take the positive direction of C so that the interior of the closed curve is always to the left as C is traversed.

lin3.pex

The following are equivalent:
$\int_{C} \vec{F} \cdot d \vec{r}$ is path independent \leftrightarrow there exists a G such that $\vec{F}=\nabla G$

$$
\begin{aligned}
& \leftrightarrow \oint_{C} \vec{F} \cdot d \vec{r}=0 \text { for any closed path } C \\
& \leftrightarrow \nabla \times \vec{F}=\operatorname{curl} \vec{F}=0
\end{aligned}
$$

Note in two dimensions with $\vec{F}=P(x, y) \vec{i}+Q(x, y) \vec{j}$ the last condition becomes

$$
Q_{x}=P_{y}
$$

Example:
Let $\vec{F}=y^{2} z^{3} \vec{i}+2 x y z^{3} \vec{j}+\left(3 x y^{2} z^{2}+z\right) \vec{k}$. Show that curl $\vec{F}=\overrightarrow{0}$. Evaluate $\oint_{C} \vec{F} \bullet \overrightarrow{d r}$, where C is the ellipse in x, y, z-space given by

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1, z=3
$$

SOLUTION

$$
\operatorname{curl} \vec{F}=\nabla \times \vec{F}=\operatorname{det}\left[\begin{array}{lll}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} z^{3} & 2 x y z^{3} & 3 x y^{2} z^{2}+z
\end{array}\right]=6 x y z^{2} \vec{i}+2 y z^{3} \vec{k}+3 y^{2} z^{2} \vec{j}-2 y z^{3} \vec{k}-6 x y z^{2} \vec{i}-3 y^{2} z^{2} \vec{j}=\overrightarrow{0} .
$$

We have shown that for the given \vec{F}, $\operatorname{curl} \vec{F}=0$. Therefore the integral is path-independent, so the integral around a closed curve is zero. Thus $\oint_{C} \vec{F} \bullet \overrightarrow{d r}=0$.

Example:

Consider the $\int_{C} \vec{F} \cdot \overrightarrow{d r}$, where $\vec{F}=\left(2 x y z+z^{2} y\right) \vec{i}+\left(x^{2} z+z^{2} x\right) \vec{j}+\left(x^{2} y+2 x y z\right) \vec{k}$. Show that $\nabla \times \vec{F}=\overrightarrow{0}$. What does this tell you about $\oint_{C} \vec{F} \cdot \overrightarrow{d r}$, where C is any closed curve?

SOLUTION

$$
\begin{aligned}
\nabla \times \vec{F} & =\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x y z+z^{2} y & x^{2} z+z^{2} x & x^{2} y+2 x y z
\end{array}\right| \\
& =\left(x^{2}+2 x z-x^{2}-2 z x\right) \vec{i}-(2 x y+2 y z-2 x y-2 z y) \vec{j}+\left(2 x z+z^{2}-2 x z-z^{2}\right) \vec{k} \\
& =\overrightarrow{0}
\end{aligned}
$$

Then $\oint_{C} \vec{F} \cdot \overrightarrow{d r}=0$ for any closed curve C. Or, equivalently, $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ is independent of the path taken between two given points.

Example

Find a function $\Phi(x, y, z)$ such that $\nabla \Phi=\vec{F}$, where \vec{F} is the vector field above.

SOLUTION

$\vec{F}=\nabla \Phi=\frac{\partial \Phi}{\partial x} \vec{i}+\frac{\partial \Phi}{\partial y} \vec{j}+\frac{\partial \Phi}{\partial z} \vec{k} \quad$ We set equal the corresponding components.

$$
\begin{aligned}
\frac{\partial \Phi}{\partial x}=2 x y z+z^{2} y \quad \Rightarrow & \\
& \Phi(x, y, z)=x^{2} y z+x y z^{2}+h(y, z) \\
& \frac{\partial \Phi}{\partial y}=x^{2} z+z^{2} x+h_{y}=x^{2} z+z^{2} x
\end{aligned}
$$

Thus $h=g(z)$

$$
\frac{\partial \Phi}{\partial z}=x^{2} y+2 x y z+g^{\prime}(z)=x^{2} y+2 x y z
$$

$g(z)=C$, a constant

Finally, we have

$$
\Phi(x, y, z)=x^{2} y z+x y z^{2}+C
$$

Example:

Evaluate

$$
\int_{C}(x+2 y) d x+\left(x^{2}-y^{3}\right) d y
$$

where C consists of the segments from $(1,1)$ to $(3,1)$ and $(3,1)$ to $(3,-1)$. Sketch C. Solution: The path C is shown below.

Let C_{1} be the segment from $(1,1)$ to $(3,1)$ and C_{2} be the segment from $(3,1)$ to $(3,-1)$. Then $C=C_{1} \cup C_{2}$.

$$
\begin{aligned}
\int_{C}(x+2 y) d x+\left(x^{2}-y^{3}\right) d y & =\int_{C_{1}}(x+2 y) d x+\left(x^{2}-y^{3}\right) d y+\int_{C_{2}}(x+2 y) d x+\left(x^{2}-y^{3}\right) d y \\
& =\int_{C_{1}}(x+2(1)) d x+\int_{C_{2}}\left((3)^{2}-y^{3}\right) d y \\
& =\int_{1}^{3}(x+2) d x+\int_{1}^{-1}\left(9-y^{3}\right) d y=8-18=-10
\end{aligned}
$$

Green's Theorem

Theorem: Let $P(x, y)$ and $Q(x, y)$ be functions of two variables which are continuous and have continuous first partial derivatives in some rectangular region H in the x, y - plane. If C is a simple, closed, piecewise smooth curve lying entirely in H, and if R is the bounded region enclosed by C, then

$$
\oint_{C}\{P(x, y) d x+Q(x, y) d y\}=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Note: Green's Theorem applies only to a closed curve.
Corollary: Let R be a bounded region in the x, y - plane. Then the area of R is given by

$$
A=\frac{1}{2} \oint_{C}(x d y-y d x)=\oint_{C} x d y=-\oint_{C} y d x
$$

Example:

Evaluate

$$
\oint_{C}(1+\tan x) d x+\left(x^{2}+e^{y}\right) d y
$$

Where C is the positively oriented boundary of the region R enclosed by the curves $y=\sqrt{x}, x=1$, and $y=0$. Be sure to sketch C.

Solution:

The region enclosed by C is shown below.

We use Green's Theorem to evaluate the integral since C is a closed curve.

$$
\begin{aligned}
\oint_{C}(1+\tan x) d x+\left(x^{2}+e^{y}\right) d y & =\iint_{R}\left(\frac{\partial\left(x^{2}+e^{y}\right)}{\partial x}-\frac{\partial(1+\tan x)}{\partial y}\right) d A \\
& =\int_{0}^{1} \int_{0}^{\sqrt{x}}(2 x-0) d y d x=2 \int_{0}^{1} x^{\frac{3}{2}} d x=\frac{4}{5}
\end{aligned}
$$

Example:

Verify that Green's Theorem is true for the line integral

$$
\oint_{C} x y d x+x^{2} d y
$$

where C is the triangle with vertices $(0,0),(1,0)$, and $(1,2)$.
Solution:
The triangle is shown below. ($0,0,1,0,1,2,0,0$)

The boundary consists of 3 line segments $C_{1}: 0 \leq x \leq 1, y=0 ; C_{2}: 0 \leq y \leq 2, x=1 ; C_{3}: y=2 x$, $x=1$ to 0 .
Thus

$$
\oint_{C} x y d x+x^{2} d y=\int_{0}^{1} 0 d x+\int_{0}^{2}(1) d y+\int_{1}^{0}\left(2 x^{2}+2 x^{2}\right) d x=\frac{2}{3}
$$

Also

$$
\begin{aligned}
\oint_{C} x y d x+x^{2} d y & =\iint_{R}\left(\frac{\partial\left(x^{2}\right)}{\partial x}-\frac{\partial(x y)}{\partial y}\right) d A \\
& =\iint_{R}(2 x-x) d A \\
& =\int_{0}^{1} \int_{0}^{2 x} x d y d x=\int_{0}^{2} \int_{\frac{v}{2}}^{1} x d x d y=\frac{2}{3}
\end{aligned}
$$

Example:

Find the area of the region bounded by the hypocycloid with vector equation

$$
\begin{aligned}
& \vec{r}(t)=\cos ^{3} t \vec{i}+\sin ^{3} t \vec{j}, \quad 0 \leq t \leq 2 \pi . \\
& A=\oint_{C} x d y=-\oint_{C} y d x=\frac{1}{2} \oint x d y-y d x
\end{aligned}
$$

We have $x=\cos ^{3} t, d x=3 \cos ^{2} t(-\sin t) d t$, and $y=\sin ^{3} t, d y=3 \sin ^{2} t \cos t d t$.
Using $A=\oint_{C} x d y: A=\oint_{C} x d y=\int_{0}^{2 \pi} \cos ^{3} t\left(3 \sin ^{2} t \cos t\right) d t=\frac{3 \pi}{8}$.

Example:

Evaluate

$$
\oint_{C}\left(1+10 x y+y^{2}\right) d x+\left(6 x y+5 x^{2}\right) d y
$$

where C is the square with vertices $(0,0),(a, 0),(a, a),(0, a)$ with counterclockwise orientation. Solution: We use Green's Theorem since the path is closed. Now

$$
P(x, y)=1+10 x y+y^{2} \text { and } Q(x, y)=6 x y+5 x^{2}
$$

Thus

$$
\begin{gathered}
P_{y}=10 x+2 y \text { and } Q_{x}=6 y+10 x \\
Q_{x}-P_{y}=4 y
\end{gathered}
$$

By Green's Theorem

$$
\begin{aligned}
\oint_{C}\left(1+10 x y+y^{2}\right) d x+\left(6 x y+5 x^{2}\right) d y & =\iint_{R}\left(Q_{x}-P_{y}\right) d A \\
& =\int_{0}^{a} \int_{0}^{a} 4 y d x d y=2 a^{3}
\end{aligned}
$$

Example:

Evaluate

$$
\oint_{C} x^{2} y d x-x y^{2} d y
$$

where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.
Solution: Since the path is a closed curve, we may use Green's Theorem to evaluate the line integral. Thus

$$
\begin{aligned}
\oint_{C} x^{2} y d x-x y^{2} d y & =\iint_{x^{2}+y^{2} \leq 4}\left(\frac{\partial\left(-x y^{2}\right)}{\partial x}-\frac{\partial\left(x^{2} y\right)}{\partial y}\right) d A \\
& =\iint_{x^{2}+y^{2} \leq 4}\left(-y^{2}-x^{2}\right) d A=-\int_{0}^{2 \pi} \int_{0}^{2} r^{2} \cdot r d r d \theta \\
& =-8 \pi
\end{aligned}
$$

Example:

Verify Green's theorem for

$$
\oint_{C}(4 x-2 y) d x+(2 x+6 y) d y
$$

where C is the ellipse $x=2 \cos \theta, y=\sin \theta, 0 \leq \theta \leq 2 \pi$. (Recall that the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$.)

SOLUTION

For this ellipse, $a=2$ and $b=1$. Let G be the interior of C. Green's theorem states that the two integrals $\oint_{C} P d x+Q d y$ and $\iint_{G}\left(Q_{x}-P_{y}\right) d x d y$ are equal. We must verify this.

Since $Q_{x}=2$ and $P_{y}=-2$,

$$
\iint_{G}\left(Q_{x}-P_{y}\right) d x d y=\iint_{G} 4 d x d y=4 \iint_{G} d x d y=4(\text { Areaof } G)=4(\pi)(2)(1)=8 \pi
$$

The ellipse is already parametrized by θ. Since $d x=-2 \sin \theta d \theta$ and $d y=\cos \theta d \theta$,

$$
\begin{aligned}
\oint_{C} P d x+Q d y & =\oint_{C}(4 x-2 y) d x+(2 x+6 y) d y \\
& =\int_{0}^{2 \pi}[(8 \cos \theta-2 \sin \theta)(-2 \sin \theta)+(4 \cos \theta+6 \sin \theta)(\cos \theta)] d \theta \\
& =\int_{0}^{2 \pi}\left[-16 \sin \theta \cos \theta+4 \sin ^{2} \theta+4 \cos ^{2} \theta+6 \sin \theta \cos \theta\right] d \theta \\
& =\int_{0}^{2 \pi}[4-10 \sin \theta \cos \theta] d \theta=8 \pi
\end{aligned}
$$

