Name: $\qquad$
Lecture Section: $\qquad$ Recitation Section:

I pledge my honor that I have abided by the Stevens Honor System.

SHOW ALL WORK! You may not use a calculator on this exam.
1 [20 pts.] Does the system

$$
\begin{aligned}
x_{1}+x_{2} & =c_{1} \\
x_{1}-x_{2} & =c_{2} \\
-x_{1}+2 x_{2} & =c_{3}
\end{aligned}
$$

possess a solution for all $c_{1}, c_{2}, c_{3}$ ? Explain your conclusion.

2 Let

$$
A=\left[\begin{array}{ll}
-4 & 2 \\
-3 & 1
\end{array}\right]
$$

2a [20 pts.] Find all eigenvalues and eigenvectors of the matrix $A$.
$\mathbf{2 b}$ [20 pts.] Solve the initial value problem

$$
x^{\prime}(t)=A x(t), \quad x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

where $A$ is the matrix above in part $2 a$.

3a[20 pts.] Let

$$
A=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]
$$

Find $A^{-1}$ using elementary row operations.

3 b [20 pts.] Let

$$
B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Find a $2 \times 2$ matrix $X$ such that

$$
A X=B
$$

and a $2 \times 2$ matrix $Y$ such that

$$
Y A=B
$$

