Exam I Solutions 10/10/07

Name:	
Lecture Section:	Recitation Section:
I pledge my honor that I have abided	by the Stevens Honor System.
•	, cell phone, or computer while taking this exam. All work must be redit will not be given for work not reasonably supported. When pledge.
Score on Problem #1a	<u> </u>
#2a	
#2b	
#2c	<u> </u>
Total Score	

1 [25 pts.] The matrix

$$A = \left[\begin{array}{rrr} 1 & -2 & 4 \\ 3 & -4 & 4 \\ 3 & -2 & 2 \end{array} \right]$$

has the eigenvalues 3 and -2. For this matrix -2 is a repeated eigenvalue with multiplicity two. Find three linearly independent eigenvectors for A.

Solution: Note: This example is the last example in the notes dealing with eigenvalues and eigenvectors.

The system $(A - \lambda I)X = 0$ is

$$(1 - \lambda)x_1 - 2x_2 + 4x_3 = 0$$

$$3x_1 - (4 + \lambda)x_2 + 4x_3 = 0$$

$$3x_1 - 2x_2 + (2 - \lambda)x_3 = 0$$

Setting $\lambda = 3$ yields

$$-2x_2 - 2x_2 + 4x_3 = 0$$
$$3x_1 - 7x_2 + 4x_3 = 0$$
$$3x_1 - 2x_2 - x_3 = 0$$

To solve this system we form the augmented matrix for this system and row reduce it.

$$\begin{bmatrix} -2 & -2 & 4 & 0 \\ 3 & -7 & 4 & 0 \\ 3 & -2 & -1 & 0 \end{bmatrix} \xrightarrow{-R_2 + R_3} \begin{bmatrix} 1 & 1 & -2 & 0 \\ 3 & -7 & 4 & 0 \\ 0 & 5 & -5 & 0 \end{bmatrix} \xrightarrow{-3R_1 + R_2} \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & -10 & 10 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \xrightarrow{10R_3 + R_2} \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

$$\xrightarrow{R_3 \leftrightarrow R_2} \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-R_2 + R_1} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus the solutions of the above system are also the solutions of the system

$$x_1 - x_3 = 0$$
$$x_2 - x_3 = 0$$

Thus $x_1 = x_2 = x_3$ and an eigenvector corresponding to $\lambda = 3$ is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Setting $\lambda = -2$ in the system $(A - \lambda I)X = 0$ yields

$$3x_1 - 2x_2 + 4x_3 = 0$$

$$3x_1 - 2x_2 + 4x_3 = 0$$

$$3x_1 - 2x_2 + 4x_3 = 0$$

2

The augmented matrix for this system is
$$\begin{bmatrix} 3 & -2 & 4 & 0 \\ 3 & -2 & 4 & 0 \\ 3 & -2 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 & 4 & 0 \\ 3 & -2 & 4 & 0 \\ 3 & -2 & 4 & 0 \\ 3 & -2 & 4 & 0 \end{bmatrix} \xrightarrow{-R_1 + R_2 \\ -R_1 + R_3} \begin{bmatrix} 3 & -2 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{3}R_1} \begin{bmatrix} 1 & -\frac{2}{3} & \frac{4}{3} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus, we have the one equation

$$x_1 - \frac{2}{3}x_2 + \frac{4}{3}x_3 = 0$$

To get two linearly independent vectors we first take $x_3 = 0$ and get $x_1 = \frac{2}{3}x_2$. Letting $x_2 = 1$ yields

the eigenvector $\begin{bmatrix} \frac{2}{3} \\ 1 \\ 0 \end{bmatrix}$. To get a second vector we set $x_2 = 0$ and get $x_1 = -\frac{4}{3}x_3$. Letting $x_3 = 1$ yields the eigenvector $\begin{bmatrix} -\frac{4}{3} \\ 0 \\ 1 \end{bmatrix}$.

2 For the matrix

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right]$$

SNB gives: eigenvectors: $\left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \leftrightarrow -1, \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \leftrightarrow 3$

2a [20 pts.] Find a general homogeneous solution of

$$\frac{dx_1}{dt} = x_1 + 2x_2$$
$$\frac{dx_2}{dt} = 2x_1 + x_2$$

Solution: The system can be written as x'(t) = Ax(t), where A is the matrix given above. Since we are given the eigenvalues and eigenvectors, then

$$x_h(t) = c_1 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $2b \lceil 30 \text{ pts.} \rceil$ Find a general solution of the nonhomogeneous system

$$\frac{dx_1}{dt} = x_1 + 2x_2 - e^t$$

$$\frac{dx_2}{dt} = 2x_1 + x_2 + 3$$

Solution: We may write the system as

$$x'(t) = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} x(t) + \begin{bmatrix} -e^t \\ 3 \end{bmatrix}$$

We assume

$$x_p(t) = \begin{bmatrix} a + be^t \\ c + de^t \end{bmatrix}$$

Then

$$x_p'(t) = \begin{bmatrix} be^t \\ de^t \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a+be^t \\ c+de^t \end{bmatrix} + \begin{bmatrix} -e^t \\ 3 \end{bmatrix}$$

which implies

$$\begin{bmatrix} be^t \\ de^t \end{bmatrix} = \begin{bmatrix} a+2c+be^t+2de^t \\ 2a+c+2be^t+de^t \end{bmatrix} + \begin{bmatrix} -e^t \\ 3 \end{bmatrix}$$

Thus by lining up the constant terms we have

$$a + 2c = 0$$
$$2a + c = -3$$

So
$$[a = -2, c = 1].$$

For the terms containing e^t we have

$$b = b + 2d - 1$$
$$d = 2b + d$$

Therefore, b = 0 and $d = \frac{1}{2}$.

$$x_p(t) = \begin{bmatrix} -2\\ 1 + \frac{1}{2}e^t \end{bmatrix}$$

Finally

$$x(t) = x_h(t) + x_p(t) = c_1 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 + \frac{1}{2} e^t \end{bmatrix}$$

SNB check:

$$\frac{dx_1}{dt} = x_1 + 2x_2 - e^t$$

$$\frac{dx_2}{dt} = 2x_1 + x_2 + 3$$

, Exact solution is: $\left\{ \left[x_1(t) = C_5 e^{-t} + C_6 e^{3t} - 2, x_2(t) = \frac{1}{2} e^t - C_5 e^{-t} + C_6 e^{3t} + 1 \right] \right\}$

3 [25 **pts**.] Find the function matrix $X^{-1}(t)$ whose value at t is the inverse of the matrix

$$X(t) = \begin{bmatrix} e^{3t} & 1 & t \\ 3e^{3t} & 0 & 1 \\ 9e^{3t} & 0 & 0 \end{bmatrix}$$

Solution: We form

$$\begin{bmatrix} e^{3t} & 1 & t & 1 & 0 & 0 \\ 3e^{3t} & 0 & 1 & 0 & 1 & 0 \\ 9e^{3t} & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-3R_1 + R_2} \begin{bmatrix} e^{3t} & 1 & t & 1 & 0 & 0 \\ 0 & -3 & 1 - 3t & -3 & 1 & 0 \\ 0 & -9 & -9t & -9 & 0 & 1 \end{bmatrix} \xrightarrow{-3R_2 + R_3} \begin{bmatrix} e^{3t} & 1 & t & 1 & 0 & 0 \\ 0 & -3 & 1 - 3t & -3 & 1 & 0 \\ 0 & 0 & -3 & 0 & -3 & 1 \end{bmatrix}$$

$$\rightarrow e^{-3t}R_1 \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \frac{1}{9}e^{-3t} \\ 0 & 1 & 0 & 1 & -t & -\frac{1}{9} + \frac{1}{3}t \\ 0 & 0 & 1 & 0 & 1 & -\frac{1}{3} \end{bmatrix}$$

Therefore

$$X^{-1}(t) = \begin{bmatrix} 0 & 0 & \frac{1}{9}e^{-3t} \\ 1 & -t & -\frac{1}{9} + \frac{1}{3}t \\ 0 & 1 & -\frac{1}{3} \end{bmatrix}$$