Ma 227	Exam IA	3/3/04
Name:	ID:	
Lecture Section:	Recitation Section:	
I pledge my honor that I have abid	ded by the Stevens Honor System.	
•	tor, cell phone, or computer while taking this et. Credit will not be given for work not reasonathe pledge.	
Score on Problem #1		
#2		
#3		
Total Score		

$$A = \left[\begin{array}{cc} 3 & 1 \\ 5 & 2 \end{array} \right]$$

Find A^{-1} . Be sure to show all the steps in your calculation and indicate what you are doing in each step.

2 Let

$$A = \left[\begin{array}{cc} 5 & 4 \\ -1 & 0 \end{array} \right]$$

2a [**20 pts**.] Find all eigenvalues and eigenvectors of the matrix *A*.

.

2b [**20 pts**.] Find a general homogeneous solution of

$$x'(t) = Ax(t)$$

where A is the matrix above in part 2a.

 $2c \left[20 \text{ pts.} \right]$ Find a general solution of $x'(t) = Ax(t) + \begin{bmatrix} e^{2t} \\ -e^{2t} \end{bmatrix}$

where A is the matrix above in part 2a.

3 [20 **pts**.] Rewrite the scalar equation

$$y'' - 3y' - 10y = \sin t$$

as a first-order system in normal form.