Ma 227	Exam IA	2/27/06
Name:		
Lecture Section:	Recitation Section:	
I pledge my honor that I have ab	ided by the Stevens Honor System.	
	ator, cell phone, or computer while taking the it. Credit will not be given for work not reason the pledge.	
Score on Problem #1		
#2		
#3		

Total Score

$$A = \left[\begin{array}{cc} 1 & 1 \\ 4 & -2 \end{array} \right]$$

Find A^{-1} . Be sure to show all the steps in your calculation and indicate what you are doing in each step.

2 Let

$$A = \left[\begin{array}{cc} 1 & 1 \\ 4 & -2 \end{array} \right]$$

2a [**20 pts**.] Find all eigenvalues and eigenvectors of the matrix A.

.

2b [20 pts.] Find a general homogeneous solution of

$$\frac{dx_1}{dt} = x_1 + x_2 \qquad x_1(0) = 2$$

$$\frac{dx_1}{dt} = x_1 + x_2 x_1(0) = 2$$

$$\frac{dx_2}{dt} = 4x_1 - 2x_2 x_2(0) = 1$$

2c [20 **pts**.] Find a general solution of

$$\frac{dx_1}{dt} = x_1 + x_2 - e^{-t}$$

$$\frac{dx_1}{dt} = x_1 + x_2 - e^{-t}$$

$$\frac{dx_2}{dt} = 4x_1 - 2x_2 + e^{-t}$$

3 [20 **pts**.] Under what condition or conditions on c_1, c_2, c_3 will the system below have a solution? You need only give the condition. You need not solve the system.

$$x_1 + 2x_2 + x_3 + 3x_4 = c_1$$
$$3x_1 + 6x_2 + 5x_3 + 10x_4 = c_2$$
$$5x_1 + 10x_2 + 7x_3 + 16x_4 = c_3$$